

PRODUCT TOXICITY TESTING RESULTS VECTOR FIRE TECHNOLOGY

BIOASSAY PRODUCT TESTING

Prepared for: Vector Fire Technology, Inc. 1017 Charles St. Unit B Coatesville, PA 19320

Prepared by: EcoAnalysts, Inc. 4770 NE View Drive Port Gamble, WA 98364

Report ID: PG2195.01

Submittal Date: April 30, 2025

All testing reported herein was performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and EcoAnalysts is not responsible for use of less than the complete report. The test results summarized in this report apply only to the sample(s) evaluated. This document is uncontrolled when printed or accessed from electronic distribution.

Approved By

Michelle Bennett

Project Manager

Author(s):

Michelle Bennett

QA Review:

Dani Mulligan

CONTENTS

1.	Executive Summary	. 1
2.	Methods	. 1
2.1	Bioassay Testing	1
2.2	Sample	1
2.3	Water for Bioassay Testing	1
2.4	SAMPLE PREPARATION	2
2.5	DATA MANAGEMENT AND ANALYSIS	2
2.6	QUALITY ASSURANCE/QUALITY CONTROL	2
3.	Results	. 3
3.1	FATHEAD MINNOW (<i>PIMEPHALES PROMELAS</i>) ACUTE TEST RESULTS - 3SFF-USP BATCH #F032425-01X	3
3.2	FATHEAD MINNOW (PIMEPHALES PROMELAS) ACUTE TEST RESULTS - 3SFF SP-100 BATCH #F032425-02X	5
3.3	FATHEAD MINNOW (<i>PIMEPHALES PROMELAS</i>) ACUTE TEST RESULTS - 3SFF-ARK BATCH #F032425-03X	7
5.	References	. 9

TABLES

Table 1-1. Toxicity Test Results Summary	1
Table 2-1. Biological Testing Performed.	1
Table 3-1. Endpoint Summary for the Pimephales promelas Acute Test	3
Table 3-2. Test Condition Summary for Pimephales promelas Acute Test	4
Table 3-3. Endpoint Summary for the Pimephales promelas Acute Test	5
Table 3-4. Test Condition Summary for Pimephales promelas Acute Test	6
Table 3-5. Endpoint Summary for the Pimephales promelas Acute Test	7
Table 3-6. Test Condition Summary for Pimephales promelas Acute Test	8

APPENDICES

- Appendix A: Statistical Comparisons and Laboratory Documents
- Appendix B: Chain of Custody and Supporting Documents

ACRONYMS AND ABBREVIATIONS

°C	Degrees Celsius
CV	Coefficient of Variation
DI	Deionized
EPA	Environmental Protection Agency
EC ₅₀ / LC ₅₀	Effect/ Lethal Concentration to 50% of Test Population
LOEC	Lowest Observed Effect Concentration
μg/L	Microgram per Liter
mg/L	Milligrams per Liter
mS/cm	Millisiemens per centimeter
NOEC	No Observed Effect Concentration
QM	Quality Manual
SOP	Standard Operating Procedures

1. EXECUTIVE SUMMARY

EcoAnalysts conducted aquatic toxicity testing on three product samples provided by Vector Fire Technology. The objective of this program is to assess the potential toxicity of the products to *Pimephales promelas* (fathead minnow) acute survival (Table 1-1). The results of the toxicity testing are contained in this report.

Sample	Test	NOEC (mg/L)	LOEC (mg/L)	EC ₅₀ / LC ₅₀ (mg/L)
3SFF-USP batch #F032425-01X	Fathead Minnow (Pimephales promelas) 96-hour Survival	33,000	66,000	63,710
3SFF SP-100 batch #F032425- 02X	Fathead Minnow (<i>Pimephales promelas</i>) 96-hour Survival	33,000	66,000	>66,000
3SFF-ARK batch #F032425-03X	Fathead Minnow (Pimephales promelas) 96-hour Survival	66,000	>66,000	>66,000

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

 $EC_{50}/LC_{50} = Effect/Lethal Concentration to 50\% of test population$

2. METHODS

The samples analyzed for toxicity were evaluated using criteria outlined in the most recently promulgated United States Environmental Protection Agency (USEPA) guidance documents outlined in Section 4.

2.1 Bioassay Testing

Bioassay testing for this project consisted of three acute bioassays. The test conducted in support of this project is summarized in Table 2-1.

Table 2-1. Biological Testing Perform

Test Type	Test Descriptor	Species	Method
A suits	96-hour Survival	Pimephales promelas	EPA-821-R-02-012 Method 2000.0; SOP
Acute		Fathead Minnow	TOX017.10

2.2 Sample

Vector Fire Technology provided three product samples for evaluation which were received on March 28, 2025. The samples were stored away from moisture and remained tightly sealed in the package in which they were received in.

2.3 Water for Bioassay Testing

The Freshwater diluent used in the *P. promelas* tests were prepared using the EPA method of creating reconstituted moderately-hard water with laboratory grade deionized water as dilution water. Extensive testing on a variety of test species has shown that there is no significant potential for toxicity or bioaccumulation of contaminants from this water supply. Chemical analysis of this water source is conducted and reviewed on an annual basis.

2.4 Sample Preparation

EcoAnalysts followed the guidance for preparing the sample as discussed with the client:

Product Sample Preparation:

P. promelas Test

 Weigh out the appropriate amount of mg of pure product sample and add to reconstituted moderately-hard water with a final volume of 1 liter to create each test concentration. This method was used for test initiation and renewals.

2.5 Data Management and Analysis

Endpoint data were calculated for each replicate and the mean value and standard deviation were determined for each of the test treatments. All hand-entered data were reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors. Review counts were conducted on any apparent outliers.

Statistical comparisons were made according to the EPA guidance. Statistical comparisons were performed using CETIS[™] software (CETIS 2022).

2.6 Quality Assurance/Quality Control

The quality assurance objectives for toxicity testing conducted by the testing laboratory are detailed in the method specific guidance documents and the laboratory's quality manual (QM). These objectives for accuracy and precision involve all aspects of the testing process, including the following:

- Source and Condition of Test Organisms
- Condition of Equipment
- Test Conditions
- Instrument Calibration
- Use of Reference Toxicants
- Record Keeping
- Data Evaluation

The batch of test organisms obtained was evaluated in a reference toxicant test that was run within a month of the testing period to establish the sensitivity of the test organisms. The reference toxicant LC_{50} or EC_{50} should fall within two standard deviations of the historical laboratory mean. Water quality measurements were monitored to ensure that they fell within prescribed limits.

The methods employed in every phase of the toxicity testing program are detailed in the EcoAnalysts Standard Operating Practices (SOP). All EcoAnalysts staff members receive regular, documented training in all SOPs and test methods. Finally, all data collected and produced as a result of these analyses were recorded on approved data sheets. If an aspect of a test deviated from protocol, the test was evaluated to determine whether it was valid according to the regulatory agencies responsible for approval of the proposed permitting action.

3. **RESULTS**

The results of the testing are presented in this section. Statistical comparisons and laboratory documents are provided in Appendix A. Chain-of-custody and sample receipt logs are provided in Appendix B.

3.1 Fathead Minnow (*Pimephales promelas*) Acute Test Results - 3SFF-USP batch #F032425-01X

The acute toxicity test with *P. promelas* was initiated on April 3, 2025. Mean survival and statistical results are summarized in Table 3-1. The test met the control acceptability criterion listed in Table 3-2. The test conditions are summarized in Table 3-2.

On Day 1, the dissolved oxygen (DO) fell below the EPA recommended range of 4.0 mg/L. Aeration was initiated in all test chambers, and the DO remained above 4.0 mg/L for the remainder of the test. Other than noted, water quality parameters were within the acceptable limits throughout the duration of the 96-hour static-renewal test.

The reference toxicant test results were within two standard deviations of the laboratory mean for survival at the time of testing (Table 3-2). This indicates that the organisms used in this study were of similar sensitivity to those previously tested at the EcoAnalysts laboratory.

	3SFF-USP batch #F032425-01X					
Conc. (mg/L)	Mean Survival (%)	Standard Deviation (%)	NOEC (mg/L)	LOEC (mg/L)	LC ₅₀ /EC ₅₀ (mg/L)	
Control (0)	100	0.0				
4,125	100	0.0				
8,250	95.0	5.8	22,000	66.000	62 710	
16,500	97.5	5.0	55,000	66,000	05,710	
33,000	97.5	5.0				
66,000	47.5	9.6				

Table 3-1.	Endpoint Summar	v for the <i>Pimephales</i>	promelas Acute Test
10010 0 11	End point outilitie	y tot the thirdpinates	

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

 LC_{50}/EC_{50} = Lethal/Effect Concentration to 50% of test population

Table 3-2. Test Condition	Summary for	Pimephales	promelas Acute	Test
---------------------------	-------------	-------------------	----------------	------

Test Duration / Type		96-hour / Static Renewal		
Species		Pimephales promelas		
Supplier		Aquatic Biosystems		
Date acquired	l	04/02/25		
Test Dates		04/03/25 – 04/07/25		
Age at test ini	tiation (Recommended: 1 - 14 days)	7 Days		
Samples used	:	3SFF-USP batch #F032425-01X; P250328.08		
Test Procedu	res	EPA-821-R-02-012, Test Method 2000.0; SOP TOX017.10		
Test location		EcoAnalysts Port Gamble Laboratory		
Control water	/ Diluent	Reconstituted Fresh Water (RFW)		
Test Lighting		16-hour light / 8-hour dark		
Test Chamber		12 oz. Plastic Chamber		
Exposure volu	ime	250 mL		
Replicates/treatment		4		
Concentration/treatment		4,125, 8,250, 16,500, 33,000, 66,000 mg/L		
Organisms/replicate		10		
Feeding		0.2 mL concentrated Artemia nauplii, two hours prior to renewal		
Test solution	renewal	Day 2		
Test Dissolved	d Oxygen (Recommended: > 2.0 mg/L)	1.3 – 9.3 mg/L		
Test Tempera	ture (Recommended: 20 \pm 1°C)	18.8 – 20.4°C		
Test Conducti Recommende	vity d: NA	112 – 1877 μS/cm		
Test pH (Rang Targeted Ran	ge not specified) ge: 6 − 9 units	7.2 – 8.2 units		
Quality Assur	ance			
Control performance standards Survival (Recommended): ≥ 90%		100%; meets acceptability criterion		
Reference Toxicant Date		04/04/25		
Survival	Reference Toxicant LC ₅₀	80.9 μg/L Copper		
Survival	Laboratory Mean LC_{50} ; Range LC_{50} (±2 SD)	109 µg/L (30.1 – 394 µg/L Copper)		
Deviations fro	om Test Protocol	Dissolved oxygen		

3.2 Fathead Minnow (*Pimephales promelas*) Acute Test Results - 3SFF SP-100 batch #F032425-02X

The acute toxicity test with *P. promelas* was initiated on April 3, 2025. Mean survival and statistical results are summarized in Table 3-3. The test met the control acceptability criterion listed in Table 3-4. The test conditions are summarized in Table 3-4.

Although DO was within the recommended range of 4.0 mg/L when measured on Day 1 (lowest DO measurement was 4.1 mg/L), aeration was added to all test chambers due to a lab error. However, on Day 3, the DO fell below the EPA recommended range of 4.0 mg/L in the 66,000 mg/L test concentration (Replicate 3) due to an air flow obstruction. The airline was fixed and the DO remained above 4.0 mg/L for the remainder of the test. Other than noted, water quality parameters were within the acceptable limits throughout the duration of the 96-hour static-renewal test.

The reference toxicant test results were within two standard deviations of the laboratory mean for survival at the time of testing (Table 3-4). This indicates that the organisms used in this study were of similar sensitivity to those previously tested at the EcoAnalysts laboratory.

	3SFF SP-100 batch #F032425-02X					
Conc. (mg/L)	Mean Survival (%)	Standard Deviation (%)	NOEC (mg/L)	LOEC (mg/L)	LC ₅₀ /EC ₅₀ (mg/L)	
Control (0)	100	0.0	33,000 66,0	66,000 >66,		
4,125	97.5	5.0				
8,250	97.5	5.0			66,000	> 66 000
16,500	97.5	5.0				>66,000
33,000	100	0.0				
66,000	85.0	10.0				

Table 3-3. Endpoint Summary for the Pimephales promelas Acute Test

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

 LC_{50}/EC_{50} = Lethal/Effect Concentration to 50% of test population

Table 3-4. Test Condition	Summary for	Pimephales	promelas Acute	Test
---------------------------	-------------	-------------------	----------------	------

	Test Duration / Type	96-hour / Static Renewal		
Species		Pimephales promelas		
Supplier		Aquatic Biosystems		
Date acquired	1	04/02/25		
Test Dates		04/03/25 – 04/07/25		
Age at test ini	tiation (Recommended: 1 - 14 days)	7 Days		
Samples used	:	3SFF SP-100 batch #F032425-02X; P250328.07		
Test Procedu	res	EPA-821-R-02-012, Test Method 2000.0; SOP TOX017.10		
Test location		EcoAnalysts Port Gamble Laboratory		
Control water	/ Diluent	Reconstituted Fresh Water (RFW)		
Test Lighting		16-hour light / 8-hour dark		
Test Chamber		12 oz. Plastic Chamber		
Exposure volu	ime	250 mL		
Replicates/tre	eatment	4		
Concentration	n/treatment	4,125, 8,250, 16,500, 33,000, 66,000 mg/L		
Organisms/re	plicate	10		
Feeding		0.2 mL concentrated Artemia nauplii, two hours prior to renewal		
Test solution	renewal	Day 2		
Test Dissolved	d Oxygen (Recommended: > 2.0 mg/L)	3.4 – 9.4 mg/L		
Test Tempera	ture (Recommended: 20 \pm 1°C)	19.1 – 20.3°C		
Test Conducti Recommende	vity d: NA	325 – 1882 μS/cm		
Test pH (Rang Targeted Ran	e not specified) ge: 6 – 9 units	7.5 – 8.2 units		
Quality Assur	ance			
Control perfo Survival (Reco	rmance standards ommended): ≥ 90%	100%; meets acceptability criterion		
Reference To:	xicant Date	04/04/25		
Survival	Reference Toxicant LC_{50}	80.9 μg/L Copper		
Survival	Laboratory Mean LC_{50} ; Range LC_{50} (±2 SD)	109 µg/L (30.1 – 394 µg/L Copper)		
Deviations fro	om Test Protocol	Dissolved oxygen		

3.3 Fathead Minnow (*Pimephales promelas*) Acute Test Results - 3SFF-ARK batch #F032425-03X

The acute toxicity test with *P. promelas* was initiated on April 3, 2025. Mean survival and statistical results are summarized in Table 3-5. The test met the control acceptability criterion listed in Table 3-6. The test conditions are summarized in Table 3-6.

On Day 1 the DO fell below the EPA recommended range of 4.0 mg/L. Due to a lab error, the test was not aerated until the low DO was observed on Day 2. At that time, aeration was initiated in all test chambers, and the DO remained above 4.0 mg/L for the remainder of the test. This deviation had no negative effects on the test results. Other than noted, water quality parameters were within the acceptable limits throughout the duration of the 96-hour static-renewal test.

The reference toxicant test results were within two standard deviations of the laboratory mean for survival at the time of testing (Table 3-6). This indicates that the organisms used in this study were of similar sensitivity to those previously tested at the EcoAnalysts laboratory.

	3SFF-ARK batch #F032425-03X						
Conc. (mg/L)	Mean Survival (%)	Standard Deviation (%)	NOEC (mg/L)	LOEC (mg/L)	LC ₅₀ /EC ₅₀ (mg/L)		
Control (0)	100	0.0		>66,000	>66,000		
4,125	97.5	5.0					
8,250	100	0.0	66.000				
16,500	100	0.0	66,000				
33,000	100	0.0					
66,000	95.0	5.8					

Table 3-5. Endpoint Summary for the Pimephales promelas Acute Test

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

 LC_{50}/EC_{50} = Lethal/Effect Concentration to 50% of test population

	Test Duration / Type	96-hour / Static Renewal		
Species		Pimephales promelas		
Supplier		Aquatic Biosystems		
Date acquired	1	04/02/25		
Test Dates		04/03/25 – 04/07/25		
Age at test ini	tiation (Recommended: 1 - 14 days)	7 Days		
Samples used	:	3SFF-ARK batch #F032425-03X; P250328.06		
Test Procedu	res	EPA-821-R-02-012, Test Method 2000.0; SOP TOX017.10		
Test location		EcoAnalysts Port Gamble Laboratory		
Control water	/ Diluent	Reconstituted Fresh Water (RFW)		
Test Lighting		16-hour light / 8-hour dark		
Test Chamber		12 oz. Plastic Chamber		
Exposure volu	ime	250 mL		
Replicates/tre	eatment	4		
Concentration	n/treatment	4,125, 8,250, 16,500, 33,000, 66,000 mg/L		
Organisms/re	plicate	10		
Feeding		0.2 mL concentrated <i>Artemia</i> nauplii, two hours prior to renewal		
Test solution	renewal	Day 2		
Test Dissolved	d Oxygen (Recommended: > 2.0 mg/L)	1.1 – 9.2 mg/L		
Test Tempera	ture (Recommended: 20 \pm 1°C)	18.9 – 20.1°C		
Test Conducti Recommende	vity d: NA	323 – 1980 μS/cm		
Test pH (Rang Targeted Ran	je not specified) ge: 6 – 9 units	7.3 – 8.2 units		
Quality Assur	ance			
Control perfo Survival (Reco	rmance standards ommended): ≥ 90%	100%; meets acceptability criterion		
Reference To:	xicant Date	04/04/25		
Survival	Reference Toxicant LC_{50}	80.9 μg/L Copper		
Survival	Laboratory Mean LC_{50} ; Range LC_{50} (±2 SD)	109 µg/L (30.1 – 394 µg/L Copper)		
Deviations fro	om Test Protocol	Dissolved oxygen		

5. **REFERENCES**

- CETIS. 2022 CETIS[™] Comprehensive Environmental Toxicity Information System User's Guide. Tidepool Scientific Software. McKinleyville, CA.
- USEPA. 2002b. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. EPA-821-R-02-012
- WDOE. 2016. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Washington State Department of Ecology. Water Quality Program. Publication number: WQ-R-95-80, Revised June 2016

APPENDIX A

Statistical Comparisons Laboratory Documents

ERROR CODES FOR DATASHEETS

CA	Called away; task completed by another tech
DC	Test solution too turbid or too dark to count organisms
FB	Found body – animal found that was previously noted as missing
IE	Incorrect Entry
IW	Illegible writing
MC	Miscount
MR	Meter reading changed; Meter no ready
NB	No body (no organism found)
SM	Stray Mark
WC	Wrong Cell (incorrect data box used)
WD	Wrong Date (incorrect date entered)
WN	Wrong number (incorrect number entered)
WP	Wrong page (incorrect data sheet)
WT	Wrong Time (incorrect time entered)

APPENDIX A1

Pimephales promelas (fathead minnow) 96-Hour Survival Test Datasheets

CETIS Summary Report								Report Test C	Date: ode/ID:		15 P250	Apr-25 09:4)328.08 / 20	2 (p 1 of 1) -4393-9504
Fathead Minr	now 96-h Acute	Survival Te	st									Ec	oAnalysts
Batch ID:	04-4879-9570	Tes	st Type:	Survival (96h)				Ana	lyst:	Mich	nelle Bennet	t	
Start Date:	03 Apr-25 14:46 Prote		otocol:	EPA/821/R-02-	012 (2002)			Dilu	ent:	Mod	I-Hard Synth	etic Water	
Ending Date:	07 Apr-25 13:3	9 Sp	ecies:	Pimephales pro	omelas			Brin	e:				_
Test Length:	95h	Tax	kon:	Actinopterygii				Sou	rce:	Aqu	atic Biosyste	ems, CO	Age: 7D
Sample ID:	01-5010-8261	Co	de:	P250328.08				Proj	ect:	Proc	duct Testing		
Sample Date:	: 24 Mar-25 15:1	10 Ma	terial:	Product Testing	9			Sou	rce:	Vec	tor Fire Tech	nology	0.41
Sample Age	10d (13.2 °C)	20 CA Cli	S (PC): ent:	Vector Fire Tec	hnology			Stat	ion:	39L	F-USP balc	n #FU32425	-01X
Multiple Com		arv			lineiegy								
Analysis ID	Endpoint	ary	Comp	arison Method			1	NOEL	LOE	L	TOEL	PMSD	s
05-0952-7777	96h Proportion	Survived	Steel I	Many-One Rank	Sum Test		•	33000	6600	0	46670	7.74%	1
Point Estima	te Summarv			,									
Analysis ID	Endpoint		Point	Estimate Metho	bd		\checkmark	Level	ma/L	_	95% LCL	95% UCL	s
15-0089-1367	96h Proportion	Survived	Trimm	ed Spearman-K	lärber		•	EC50	6371	0	51580	78710	1
Test Accepta	bility					тл	211	imite		_			
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower		Upper	Over	lap	Decision		
05-0952-7777	96h Proportion	Survived	Contro	l Resp	1	0.9		<<	Yes		Passes C	riteria	
15-0089-1367	96h Proportion	Survived	Contro	l Resp	1	0.9		<<	Yes		Passes Ci	riteria	
96h Proportio	on Survived Su	mmary											
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std E	Err	Std Dev	CV%	%Effect
0	D	4	1.0000	1.0000	1.0000	1.0000		1.0000	0.000	00	0.0000	0.00%	0.00%
4125		4	1.0000	0 1.0000	1.0000	1.0000		1.0000	0.000	00	0.0000	0.00%	0.00%
8250		4	0.9500	0.8581	1.0420	0.9000		1.0000	0.028	39	0.0577	6.08%	5.00%
16500		4	0.9750	0.8954	1.0550	0.9000		1.0000	0.02	50	0.0500	5.13% 5.13%	2.50%
66000		4	0.9750	0.0954	0.6273	0.9000		0.6000	0.02	79 79	0.0500	20 16%	2.30% 52.50%
Och Drepartie	an Sumined Det	T I	0.4750	0.0221	0.0210	0.4000		0.0000	5. 005		455750004		52.00 %
		Pop 1	Pop 2	Pop 3	Pop 4			MD	J. Cor	IED4	+EF/F09D4;	DDOJEBCOA	523FC59E
		1 0000	1 0000	1 0000	1 0000								
4125	D	1.0000	1 0000	1.0000	1.0000								
8250		0 9000	1 0000	1.0000	0 9000								
16500		1 0000	1.0000	1.0000	0.9000								
33000		1.0000	0.0000	1.0000	1 0000								
66000		0.5000	0.6000	0.4000	0.4000								
96h Proportio	on Survived Bin	omials											
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4								
0	D	10/10	10/10	10/10	10/10								
4125		10/10	10/10	10/10	10/10								
8250		9/10	10/10	10/10	9/10								
16500		10/10	10/10	10/10	9/10								
33000		10/10	9/10	10/10	10/10								
66000		5/10	6/10	4/10	4/10								

CETIS Test Data Worksheet

EcoAnalysts

Fathead Minnow 96-h Acute Survival Test

Start Date: End Date: Sample Date:	03 A 07 A 24 M	pr-25 pr-25 ar-25	14:46 13:39 15:10	Species: Protocol: Material:	Pimephale EPA/821/F Product Te	Pimephales promelas EPA/821/R-02-012 (2002) Product Testing		Samp Samp Samp	le Code: P250328.08 le Source: Vector Fire Technology le Station: 3SFF-USP batch #F032425-01X
Conc-mg/l	Code	Pon	Pos	# Exposec	24h Surviva	48h Surviva	72h Surviva	96h Surviva	Notos
0	D	1	5	10				10	NULES
0	D	2	20	10				10	
0	D	3	1	10				10	
0	D	4	22	10				10	
4125		1	7	10				10	
4125		2	4	10				10	
4125		3	2	10				10	
4125		4	3	10				10	
8250		1	16	10				9	
8250		2	6	10				10	
8250		3	9	10				10	
8250		4	17	10				9	
16500		1	8	10				10	
16500		2	11	10				10	
16500		3	14	10				10	
16500		4	24	10				9	
33000		1	13	10				10	
33000		2	23	10				9	
33000		3	21	10				10	
33000		4	19	10				10	
66000		1	15	10				5	
66000		2	12	10				6	
66000		3	10	10				4	
66000		4	18	10				4	

Dh QA:

Copy and Past VALUES from

Max

21.4

9

LAB ID P250328.08

Treatment	Rep	Chamber
Control	1	24
Control	2	4
Control	3	12
Control	4	22
4125	1	3
4125	2	21
4125	3	20
4125	4	17
8250	1	23
8250	2	7
8250	3	8
8250	4	13
16500	1	6
16500	2	10
16500	3	14
16500	4	2
33000	1	5
33000	2	1
33000	3	18
33000	4	16
66000	1	15
66000	2	19
66000	3	9
66000	4	11
	1	
	2	
	3	
	4	

Version V.1	GENERAL			
Client	Vector Fire Technology			Test Parameters
Project	Product Testing			Min
Project Number	PG2195		DO	4
Project Manager	M. Bennett	Note: input lowest and highest decimal for temp	Temp	18.5
Date Sample Received	3/28/2025		Conductivity	
Test type	96-Hour Acute Toxicity with FHM		pН	6
Matrix	Liquid			
Test Acceptability	≥ 90% average survival of control	TEST	START TIME/INIT:	1446 CS (TW/LG)
Test Start Date	04/03/25	TES	T END TIME/INIT:	1339 TVL
Test Species	Pimephales promelas			
Organism Batch	ABS040225.01		CLIENT SAMPLE ID	
Organism Acquired	4/2/2025		3SFF-USP batch #	F032425-01X
Organism Acclimation	1			
Organism Age	7 days			
Test Protocol	Tox 017			Concentrations (mg
Regional Protocol	USEPA EPA-821-R-02-012		1	Control
Test Location	Bath 1		2	4125
Light Intensity	50-100 foot candles		3	8250
Light Cycle	16L:8D		4	16500
Water Description	moderately hard fresh water		5	33000
Organisms per Replicate	10		6	66000
Test Chamber Size	12 oz		7	
Exposure Volume	250 mL	Food Batch ID	8	
Feeding Information	0.2 mL Artemia nauplii 2 hrs prior to renewal (96-hour test)	491842	9	
Test Dissolved Oxygen	> 4			
Test Temperature	20 ± 1			
Conductivity				
Test pH	7.5 ± 1.5]		

96-Hour Acute WET Test

V.1	CLIENT	Vector Fire Technology	DATE RECEIVED	3/28/25	PROTOCOL	Tox 017
	PROJECT	Product Testing	TEST START DATE	4/3/25	PROJECT MANAGER	M. Bennett
	CLIENT SAMPLE ID	3SFF-USP batch #F032425-01X	TEST END DATE	4/7/25	SPECIES	Pimephales promelas
	LAB SAMPLE ID	P250328.08	MATRIX	Liquid	NO. OF ORGANISMS	10

96-Hour Acute Toxicity with FHM

RFW

Day of Test	Concentration Spiking Amount (mg/L) (mg/L)		Total Volume (mL)	Diluent Type
	0	0	1000	
0	4125	4125	1000	
	8250	8250	1000	
	16500	16500	1000	
	33000	33000	1000	
	66000	66000	1000	

Day of Test	Concentration (mg/L)	Spiking Amount (mg/L)	Total Volume (mL)
	0	0	1000
	4125	4125	1000
	8250	8250	1000
2	16500	16500	1000
	33000	33000	1000
	66000	66000	1000

Test Dilution Prep

Date	Balance ID	Sample ID (P#)	Water Batch ID	Initials	Comments
					66000 concentration
4/3/2025	7	P250328.08	RFW032525.01	LG	is quite viscous-LG 4/3
				_	
4/5/2025	7	P250328.08	RFW040225.01	SN	

V.1	CLIENT	Vector Fire Technology	DATE RECEIVED	3/28/25	PROTOCOL	Tox 017
	PROJECT	Product Testing	TEST START DATE	4/3/25	PROJECT MANAGER	M. Bennett
	CLIENT SAMPLE ID	3SFF-USP batch #F032425-01X	TEST END DATE	4/7/25	SPECIES	Pimephales promelas
	LAB SAMPLE ID	P250328.08	MATRIX	Liquid	NO. OF ORGANISMS	10

96-Hour Acute Toxicity with FHM

			DO (mg/L)	TEMP (°C)	CONDUCTIVITY	рН	
		Concentration (mg/L)	> 4	19 - 21	(µS/cm)	6 - 9	Comments
Day 0		Control	9.0	19.0	342	8.2	
Stock		4125	9.2	18.8	442	8.2	
Date	4/3/825	8250	9.1	18.9	541	8.1	
Time	1147	16500	9.2	18.9	736	8.1	
Tech	NL	33000	9.2	18.9	112	8.1	
Meter #	8	66000	9.2	18.9	1877	8.1	
Day 1		Control	8.2	19.6	345	7.9	
Rep 1		4125	7.5	19.5	441	7.6	
Date	04/04/25	8250	6.8	19.4	537	7.5	
Time	816	16500	6.4	19.6	719	7.3	
Tech	TVL	33000	3.7	19.6	1079	7.2	Low DO, test aerated- TVL 4/4/25
Meter #	8	66000	1.3	19.7	1749	7.2	
Day 2		Control	8.9	19.5	351	8.1	
Rep 2		4125	9.0	19.7	448	8.0	
Date	04/05/25	8250	8.5	19.6	539	7.9	
Time	955	16500	8.9	19.6	732	8.1	
Tech	SN	33000	8.2	19.9	1094	7.9	
Meter #	7	66000	4.6	19.6	1787	7.4	
Day 2		Control	9.2	19.0	325	8.2	
Renewal Stock		4125	9.3	19.0	424	8.1	
Date	04/05/25	8250	9.3	19.0	523	8.1	
Time	940	16500	9.3	19.0	717	8.1	
Tech	SN	33000	9.3	19.0	1103	8.1	
Meter #	7	66000	9.3	19.0	1845	8.0	
Day 3		Control	8.9	20.4	332	8.2	
Rep 3		4125	8.9	20.4	428	8.2	
Date	04/06/25	8250	8.8	19.8	531	8.2	
Time	1438	16500	8.9	20.1	724	8.2	
Tech	KD	33000	8.1	20.2	1104	8.0	
Meter #	7	66000	7.7	20.1	1820	7.8	
Day 4		Control	8.5	19.5	336	8.2	
Rep 4		4125	8.8	19.6	433	8.2	
Date	04/07/25	8250	8.8	19.8	530	8.2	
Time	828	16500	7.8	19.8	729	8.1	
Tech	TVL	33000	7.9	19.8	1081	8.0	
Meter #	7	66000	6.3	19.6	1865	7.7	

V.1	CLIENT	Vector Fire Technology	DATE RECEIVED	3/28/25	PROTOCOL	Tox 017
	PROJECT	Product Testing	TEST START DATE	4/3/25	PROJECT MANAGER	M. Bennet
	CLIENT SAMPLE ID	USP batch #F032425-01X	TEST END DATE	4/7/25	SPECIES	Pimephales promelas
	LAB SAMPLE ID	P250328.08	MATRIX	Liquid	NO. OF ORGANISMS	10

Abbreviation Key:

96-Hour Acute Toxicity with FHM

NB = No Body			Day 1			Day 2			Day 3			Day 4		
FB = Found Body		Date	04/0)4/25	Date	04/0	15/25	Date	04/0	16/25	Date	04/0	07/25	
ST = Stranded		Time	8	32	Time	12	47	Time	15	54	Time	13	339	
r		Tech	T	VL	Tech	S	N	Tech	К	D	Tech	Т	VL	
Concentration (mg/L)	REF	Alive	Dead	Obs	Comments									
	1	10	0		10	0		10	0		10	0		
Control	2	10	0		10	0		10	0		10	0		
control	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		10	0		10	0		10	0		
4125	2	10	0		10	0		10	0		10	0		
4125	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	9	1		9	0		9	0		9	0		
0350	2	10	0		10	0		10	0		10	0		
8250	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		9	1		
	1	10	0		10	0		10	0		10	0		
16500	2	10	0		10	0		10	0		10	0		
10500	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		9	1		9	0		
	1	10	0		10	0		10	0		10	0		
22000	2	10	0		10	0		10	0		9	1		
33000	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	7	3		6	1		6	0		5	1		
66000	2	10	0		8	2		6	2		6	0		
66000	3	8	2		7	1		4	3		4	0		
	4	5	5		5	0		4	1		4	0		
Feed (Time/Init.)														
0.2 mL Artemia nauplii 2 hrs prior to renewal (96- hour test)						NL								

:56 (p 1 of 1) 1-3318-0969	Apr-25 09:5)328.07 / 11	15 P250	te: /ID:	port Date st Code/II	Repor Test C				ETIS Summary Report							
coAnalysts	Ec									t	/al Tes	Acute Surviva	ow 96-h Ac	Fathead Minne		
	t etic Water	elle Bennet -Hard Synth	: Mich Mod	Analyst: Diluent: Brine:	Ana Dilu Brit			012 (2002) melas	vival (96h) A/821/R-02- hephales pro	Type: Su ocol: EP cies: Pir	Test Prot Spec	7-1827 25 14:47 25 13:26	17-8867-18 03 Apr-25 1 07 Apr-25 1	Batch ID: Start Date: Ending Date:		
Age: 7D	ems, CO	atic Biosyste	Aqu	Source:	Sou				inopterygii	on: Ac	Тахо		95h	Test Length:		
		luct Testing	Proc	Project:	Pro				50328.07	e: P2	Cod	3-8706	11-8203-87	Sample ID:		
	nology	or Fire Tech	Vect	Source:	Sou				duct Testing	erial: Pro	Mate	25 17:30	24 Mar-25 1	Sample Date:		
<u>425-02X</u>	atch #F0324	F SP-100 ba	325	Station:	Sta			hnology	stor Fire Tec	(PC):	CAS	25 12:20 (16 2 °C)	28 Mar-25	Receipt Date:		
								mology		II. VE	Cilei	(10.2 C) Summary		Multiple Com		
s	PMSD	TOFI		10	NOFI	./			on Method	Comparie		ouininary	Endpoint			
1	8 27%	46670	6000) 66(33000	v		Sum Test	v-One Rank	Steel Mar	red	nortion Survive	96h Proport	13-0874-0502		
	0.2170	40070	0000	, 000	00000			oun rest	y-one rtank	Oteen Mar	cu	arv	e Summarv	Point Estimate		
L S	95% UCL	95% LCL	ng/L	mg	Level	\checkmark		d	imate Metho	Point Est		nt	Endpoint	Analysis ID		
1			<mark>66000</mark>	>66	EC50			PIN)	erpolation (IC	Linear Int	ved	portion Survive	96h Proport	03-1889-8445		
					imits		ТА						bility	Test Acceptab		
		Decision	verlap	r Ov	Upper	r	Lower	Test Stat		Attribute		nt	Endpoint	Analysis ID		
	iteria	Passes Cr	es	Yes	<<		0.9	1	esp	Control R	ved	portion Survive	96h Proport	03-1889-8445		
	iteria	Passes Cr	es	Yes	<<		0.9	1	esp	Control R	ved	portion Survive	96h Proport	13-0874-0502		
											,	ved Summary	on Survived	96h Proportio		
%Effect	CV%	Std Dev	td Err	Sto	Max		Min	95% UCL	95% LCL	Mean	unt	ode Cou	Code	Conc-mg/L		
0.00%	0.00%	0.0000	.0000	0.0	1.0000	0	1.0000	1.0000	1.0000	1.0000		4	D	0		
2.50%	5.13%	0.0500	.0250	0.0	1.0000	0	0.9000	1.0550	0.8954	0.9750		4		4125		
2.50%	5.13% 5.13%	0.0500	0250	0 0.0	1.0000	0	0.9000	1.0550	0.8954	0.9750		4		8250		
2.50%	0.00%	0.0500	0000	0 0.0 0 0.0	1.0000	0	1 0000	1.0000	1 0000	1 0000		4		33000		
15.00%	11.76%	0.1000	.0500	0.0	0.9000	0	0.7000	1.0090	0.6909	0.8500		4		66000		
BAC9E559A	E2DBEEEB	E60A76541	027D06C	MD5: 02	мг	•						ved Detail	on Survived	96h Proportio		
DINGOLOGOIN		2007170041	210000	WID0: 02	IVIL			Rep 4	Rep 3	Rep 2	o 1	ode Rep	Code	Conc-mg/L		
								1.0000	1.0000	1.0000	000	1.00	D	0		
								1.0000	1.0000	1.0000	000	0.900		4125		
								1.0000	0.9000	1.0000	000	1.00		8250		
								1.0000	1.0000	1.0000	000	0.900		16500		
								1.0000	1.0000	1.0000	000	1.000		33000		
								0.9000	0.7000	0.9000	000	0.900		66000		
											5	ved Binomials	on Survived	96h Proportio		
								Rep 4	Rep 3	Rep 2	o 1	ode Rep	Code	Conc-mg/L		
								10/10	10/10	10/10	10	10/10	D	0		
								10/10	10/10	10/10	C	9/10		4125		
								10/10	9/10	10/10	10	10/10		8250		
								10/10	10/10					10-00		
								10/10	10/10	10/10)	9/10		16500		
								10/10	10/10 10/10	10/10 10/10) 10	9/10 10/10		16500 33000		

DM QA:

CETIS Test Data Worksheet

EcoAnalysts

Fathead Minnow 96-h Acute Survival Test

Start Date: End Date: Sample Date:	03 A 07 A 24 M	pr-25 pr-25 ar-25	14:47 13:26 17:30	Species: Protocol: Material:	Pimephale EPA/821/F Product Te	es promelas R-02-012 (200 esting	2)	Samp Samp Samp	le Code: P250328.07 le Source: Vector Fire Technology le Station: 3SFF SP-100 batch #F032425-02X
0	0-4-	Dere	Dee	# Expose	24I Surviva	48 Surviva	72 Surviva	96) Surviva	Madaa
Conc-mg/L	D	кер 1	15	10	25	2.5	25	10	Notes
0	D	2	20	10				10	
0	D	3	9	10				10	
0	D	4	21	10				10	
4125		1	2	10				9	
4125		2	13	10				10	
4125		3	14	10				10	
4125		4	11	10				10	
8250		1	22	10				10	
8250		2	3	10				10	
8250		3	16	10				9	
8250		4	4	10				10	
16500		1	18	10				9	
16500		2	10	10				10	
16500		3	19	10				10	
16500		4	7	10				10	
33000		1	12	10				10	
33000		2	17	10				10	
33000		3	1	10				10	
33000		4	23	10				10	
66000		1	8	10				9	
66000		2	6	10				9	
66000		3	5	10				7	
66000		4	24	10				9	

Page 23 of 74

Version V.1	GENERAL					Copy
Client	Vector Fire Technology			Test Parameters		Treatm
Project	Product Testing			Min	Max	Control
Project Number	PG2195		DO	4		Control
Project Manager	M. Bennett	Note: input lowest and highest decimal for temp	Temp	18.5	21.4	Control
Date Sample Received	3/28/2025		Conductivity			Control
Test type	96-Hour Acute Toxicity with FHM		рН	6	9	4:
Matrix	Liquid					4:
Test Acceptability	≥ 90% average survival of control	TEST S	TART TIME/INIT:	1447 CS (TW/LG)		4:
Test Start Date	04/03/25	TES	T END TIME/INIT:	1326 TVL		4:
Test Species	Pimephales promelas				_	82
Organism Batch	ABS040225.01		CLIENT SAMPLE II	þ	LAB ID	83
Organism Acquired	4/2/2025		3SFF SP-100 batc	h #F032425-02X	P250328.07	82
Organism Acclimation	1					82
Organism Age	7 days					16
Test Protocol	Tox 017			Concentrations (mg/L)		16
Regional Protocol	USEPA EPA-821-R-02-012		1	Control		16
Test Location	Bath 1		2	4125		16
Light Intensity	50-100 foot candles		3	8250		330
Light Cycle	16L:8D		4	16500		330
Water Description	moderately hard fresh water		5	33000		330
Organisms per Replicate	10		6	66000		330
Test Chamber Size	12 oz		7			660
Exposure Volume	250 mL	Food Batch ID	8			660
Feeding Information	0.2 mLArtemia nauplii 2 hrs prior to renewal (96-hour test)	491842	9			66
Test Dissolved Oxygen	> 4					660
Test Temperature	20 ± 1					
Conductivity						
Test pH	7.5 ± 1.5					

96-Hour Acute WET Test

V.1	CLIENT	Vector Fire Technology	DATE RECEIVED	3/28/25	PROTOCOL	Tox 017
	PROJECT	Product Testing	TEST START DATE	4/3/25	PROJECT MANAGER	M. Bennett
	CLIENT SAMPLE ID	3SFF SP-100 batch #F032425-02X	TEST END DATE	4/7/25	SPECIES	Pimephales promelas
	LAB SAMPLE ID	P250328.07	MATRIX	Liquid	NO. OF ORGANISMS	10

96-Hour Acute Toxicity with FHM

Day of Test	Concentration (mg/L)	Spiking Amount (mg/L)	Total Volume (mL)	Diluent Type	RFW
	0	0	1000		
	4125	4125	1000		
	8250	8250	1000		
0	16500	16500	1000		
	33000	33000	1000		
	66000	66000	1000		

Day of Test	Concentration (mg/L)	Spiking Amount (mg/L)	Total Volume (mL)
	0	0	1000
	4125	4125	1000
	8250	8250	1000
2	16500	16500	1000
	33000	33000	1000
	66000	66000	1000

Test Dilution Prep

Date	Balance ID	Sample ID (P#)	Water Batch ID	Initials	Comments]
4/3/2025	7	P25038.07	RFW032525.01	LG	Higher concentrations	are frothy, 66000 concent
4/5/2025	7	P25038.07	RFW040225.01	SN	mold growing in produ	ct jar

V.1	CLIENT	Vector Fire Technology	DATE RECEIVED	3/28/25	PROTOCOL	Tox 017
	PROJECT	Product Testing	TEST START DATE	4/3/25	PROJECT MANAGER	M. Bennett
	CLIENT SAMPLE ID	3SFF SP-100 batch #F032425-02X	TEST END DATE	4/7/25	SPECIES	Pimephales promelas
	LAB SAMPLE ID	P250328.07	MATRIX	Liquid	NO. OF ORGANISMS	10

96-Hour Acute Toxicity with FHM

			DO (mg/L)	TEMP (°C)	CONDUCTIVITY	рН	7
		Concentration (mg/L)	> 4	19 - 21	(µS/cm)	6 - 9	Comments
Day 0		Control	9.2	19.1	343	7.8	
Stock		4125	9.2	19.2	432	7.8	
Date	04/03/25	8250	9.2	19.1	496	7.9	
Time	1313	16500	9.2	19.2	721	8.0	
Tech	MM	33000	9.2	19.2	1090	8.0	
Meter #	7	66000	9.2	19.1	1826	8.2	
Day 1		Control	8.6	19.3	358	8.0	Test was aerated by mistake. MB 4/30/25
Rep 1		4125	7.2	19.3	442	7.7	
Date	04/04/25	8250	6.4	19.3	534	7.6	
Time	7:29	16500	5.0	19.3	719	7.6	
Tech	TVL	33000	5.7	19.3	1092	7.7	
Meter #	8	66000	4.1	19.4	1808	7.6	
Day 2		Control	9.4	19.3	362	8.2	
Rep 2		4125	9.2	19.7	443	8.2	
Date	04/05/25	8250	9.1	19.6	540	8.2	
Time	1135	16500	9.0	19.5	721	8.2	
Tech	SN	33000	8.3	19.5	1074	7.9	
Meter #	7	66000	7.4	19.4	1835	7.8	
Day 2		Control	9.3	19.2	325	8.2	
Renewal Stock		4125	9.2	19.5	422	8.1	
Date	04/05/25	8250	9.2	19.4	515	8.2	
Time	1127	16500	9.2	19.3	707	8.2	
Tech	SN	33000	9.2	19.4	1084	8.2	
Meter #	7	66000	9.2	19.3	1822	8.2	
Day 3		Control	8.9	20.1	327	8.2	
Rep 3		4125	8.7	20.3	425	8.2	
Date	04/06/25	8250	8.6	20.3	518	8.1	
Time	1508	16500	8.5	20.2	714	8.1	
Tech	KD	33000	7.3	20.1	1094	7.8	
Meter #	7	66000	3.4	20.2	1843	7.5	DO out of range, management notified; airflow to chamber increased - KD 4/6/25
Day 4		Control	8.6	19.4	333	8.2	
Rep 4		4125	8.9	19.4	435	8.2	
Date	04/07/25	8250	8.8	19.4	529	8.2	
Time	803	16500	8.0	19.5	717	7.9	
Tech	TVL	33000	8.1	19.6	1112	8.0	
Meter #	7	66000	6.8	19.5	1882	7.9	

V.1	CLIENT	Vector Fire Technology	DATE RECEIVED 3/28/25 P		PROTOCOL	Tox 017
	PROJECT	Product Testing	TEST START DATE	4/3/25	PROJECT MANAGER	M. Bennett
	CLIENT SAMPLE ID	100 batch #F032425-02X	TEST END DATE	4/7/25	SPECIES	Pimephales promelas
	LAB SAMPLE ID	P250328.07	MATRIX	Liquid	NO. OF ORGANISMS	10

Abbreviation Key:					96-Hou	r Acute	Toxicity	with FH	М					
NB = No Body			Day 1			Day 2			Day 3			Day 4		
FB = Found Body		Date	04/0	4/25	Date	04/0)5/25	Date	04/0)6/25	Date	04/	07/25	
ST = Stranded		Time	7	52	Time	13	26	Time	16	523	Time	1	326	
		Tech	T	VL	Tech	S	N	Tech	ĸ	D	Tech	Г	٦VL	
Concentration (mg/L)	REP	Alive	Dead	Obs	Alive	Dead	Obs	Alive	Dead	Obs	Alive	Dead	Obs	Comments
	1	10	0		10	0		10	0		10	0		
Control	2	10	0		10	0		10	0		10	0		
	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		10	0		9	1		9	0		
4125	2	10	0		10	0		10	0		10	0		
	3	10	0		10	0		10	0		10	0		
	4	9	1		10	0		10	0		10	0		
8250	1	10	0		10	0		10	0		10	0		
	2	10	0		10	0		10	0		10	0		
	3	10	0		10	0		9	1		9	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		9	1		9	0		9	0		
16500	2	10	0		10	0		10	0		10	0		
	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		10	0		10	0		10	0		
33000	2	10	0		10	0		10	0		10	0		
	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		10	0		9	1		9	0		
66000	2	9	1		9	0		9	0		9	0		
-	3	8	2		8	0		7	1		7	0		
	4	10	0		10	0		9	0		9	0		
Feed (Time/Init.)														
0.2 mL Artemia nauplii 2 hrs prior to renewal (96- hour test)						NL								

Repo Test (ETIS Summary Report							
				st	Survival Te	now 96-h Acute	Fathead Minn			
An Dil Bri		012 (2002) melas	urvival (96h) PA/821/R-02- mephales pro	t Type: tocol: ecies:	Batch ID: 05-9151-7865 Test Type: Start Date: 03 Apr-25 14:47 Protocol: Ending Date: 07 Apr-25 13:03 Species:		Batch ID: Start Date: Ending Date:			
So			ctinopterygii	on:	Ta	94h	Test Length:			
Pro			250328.06	de:	Co	02-7866-8467	Sample ID:			
So			roduct Testing	erial:	5 Ma	24 Mar-25 16:4	Sample Date:			
Station: <mark>3</mark>				S (PC):) CA	: 28 Mar-25 12:2	Receipt Date:			
		nnology	ector Fire Tec	ent:	;) Cli	9d 22h (16.2 °C	Sample Age:			
					ry	parison Summa	Multiple Com			
\checkmark NOEL	\checkmark		ison Method	Compa		Endpoint	Analysis ID			
66000		Sum Test	ny-One Rank	Steel N	Survived	96h Proportion	06-6849-6286			
						te Summary	Point Estimat			
√ Level	\checkmark	d	timate Metho	Point I		Endpoint	Analysis ID			
EC50		PIN)	terpolation (IC	Linear	Survived	96h Proportion	09-9909-5993			
C Limits	TAC L					bility	Test Acceptal			
Upper	Lower	Test Stat)	Attribu		Endpoint	Analysis ID			
<<	0.9	I Resp 1 0.9		Contro	Survived	96h Proportion	06-6849-6286			
<<	0.9	1	Resp	Contro	Survived	96h Proportion	09-9909-5993			
					imary	on Survived Sun	96h Proportio			
Max	Min	95% UCL	95% LCL	Mean	Count	Code	Conc-mg/L			
1.0000	1.0000	1.0000	1.0000	1.0000	4	D	0			
1.0000	1 0000	1.0000	1 0000	1 0000	4 4		4125 8250			
1 0000	1.0000	1 0000	1.0000	1.0000	4		16500			
1.0000	1.0000	1.0000	1.0000	1.0000	4		33000			
1.0000	0.9000	1.0420	0.8581	0.9500	4		66000			
М					il	on Survived Deta	96h Proportio			
		Rep 4	Rep 3	Rep 2	Rep 1	Code	Conc-mg/L			
		1.0000	1.0000	1.0000	1.0000	D	0			
		0.9000	1.0000	1.0000	1.0000		4125			
		1.0000	1.0000	1.0000	1.0000		8250			
		1.0000	1.0000	1.0000	1.0000		16500			
		1.0000	1.0000	1.0000	1.0000		33000			
		1.0000	0.9000	0.9000	1.0000		66000			
					mials	on Survived Bin	96h Proportio			
		Rep 4	Rep 3	Rep 2	Rep 1	Code	Conc-mg/L			
		10/10	10/10	10/10	10/10	D	0			
		9/10	10/10	10/10	10/10		4125			
		10/10	10/10	10/10	10/10		8250			
		10/10	10/10	10/10	10/10		16500			
		10/10	10/10	10/10	10/10		33000			
				10/10			00000			
✓ NOEL 66000 ✓ NOEL 66000 ✓ Level EC50 C Limits Upper <<	√)	012 (2002 melas 0 Sum Tes 0 5 5 5 5 5 5 5 5 5 5 5 5 5	Survival (96h) EPA/821/R-02-012 (2002 Pimephales promelas Actinopterygii P250328.06 Product Testing Vector Fire Technology arison Method Many-One Rank Sum Tes Estimate Method Interpolation (ICPIN) tte Test Sta I Resp 1 95% LCL 95% UC 1.0000 1.0000 0.8954 1.0550 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000	Attribute Test Steel Many-One Rank Sum Test Mean 95% LCL 95% UC Control Resp 1 Mean 95% LCL 95% UC 1.0000 1.0000 1.0000 0.9500 0.8581 1.0420 Kep 2 Rep 3 Rep 2 Rep 3 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 </td <td>Survival Test Survival (96h) 7 Protocol: EPA/821/R-02-012 (2002 3 Species: Pimephales promelas Taxon: Actinopterygii Code: P250328.06 5 Material: Product Testing 0 CAS (PC): C) Client: Vector Fire Technology Try Comparison Method Survived Steel Many-One Rank Sum Tes Survived Control Resp 1 Attribute Test Sta Survived Control Resp 1 Attrobot 1.0000 1.0000 4 1.0000 1.0000 4 0.0000 1.0000 4 0.0000</td> <td>Ammary Report ow 96-h Acute Survival Test 05-9151-7865 Test Type: Survival (96h) 03 Apr-25 14:47 Protocol: EPA/821/R-02-012 (2002 07 Apr-25 13:03 Species: Pimephales promelas 94h Taxon: Actinopterygii 02-7866-8467 Code: P250328.06 24 Mar-25 16:45 Material: Product Testing 28 Mar-25 12:20 CAS (PC): 9d 22h (16.2 °C) Client: Vector Fire Technology parison Summary Endpoint Comparison Method 96h Proportion Survived Steel Many-One Rank Sum Test e Summary Endpoint Point Estimate Method 96h Proportion Survived Control Resp 1 96h Proportion Survived Control Resp 1 1 0000 1.0000 1.0000 1.0000 96h Proportion Survived Control Resp 1 1 0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000</td>	Survival Test Survival (96h) 7 Protocol: EPA/821/R-02-012 (2002 3 Species: Pimephales promelas Taxon: Actinopterygii Code: P250328.06 5 Material: Product Testing 0 CAS (PC): C) Client: Vector Fire Technology Try Comparison Method Survived Steel Many-One Rank Sum Tes Survived Control Resp 1 Attribute Test Sta Survived Control Resp 1 Attrobot 1.0000 1.0000 4 1.0000 1.0000 4 0.0000 1.0000 4 0.0000	Ammary Report ow 96-h Acute Survival Test 05-9151-7865 Test Type: Survival (96h) 03 Apr-25 14:47 Protocol: EPA/821/R-02-012 (2002 07 Apr-25 13:03 Species: Pimephales promelas 94h Taxon: Actinopterygii 02-7866-8467 Code: P250328.06 24 Mar-25 16:45 Material: Product Testing 28 Mar-25 12:20 CAS (PC): 9d 22h (16.2 °C) Client: Vector Fire Technology parison Summary Endpoint Comparison Method 96h Proportion Survived Steel Many-One Rank Sum Test e Summary Endpoint Point Estimate Method 96h Proportion Survived Control Resp 1 96h Proportion Survived Control Resp 1 1 0000 1.0000 1.0000 1.0000 96h Proportion Survived Control Resp 1 1 0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000			

Analyst: MB QA: DM

CETIS Test Data Worksheet

EcoAnalysts

Fathead Minnow 96-h Acute Survival Test

Start Date: End Date: Sample Date:	03 A 07 A 24 M	pr-25 pr-25 ar-25	14:47 13:03 16:45	Species: Protocol: Material:	Pimephale EPA/821/F Product Te	es promelas R-02-012 (200 esting	02)	Samp Samp Samp	le Code: P250328.06 le Source: Vector Fire Technology le Station: 3SFF-ARK batch #F032425-03X
Conc mg/l	Codo	Pon	Pos	# Exposed	24ł Surviva	48h Surviva	72ł Surviva	96ł Surviva	Notos
0	D	1	1	10				10	Notes
0	D	2	17	10				10	
0	D	3	23	10				10	
0	D	4	5	10				10	
4125		1	9	10				10	
4125		2	7	10				10	
4125		3	6	10				10	
4125		4	21	10				9	
8250		1	18	10				10	
8250		2	19	10				10	
8250		3	10	10				10	
8250		4	16	10				10	
16500		1	15	10				10	
16500		2	13	10				10	
16500		3	11	10				10	
16500		4	12	10				10	
33000		1	14	10				10	
33000		2	20	10				10	
33000		3	24	10				10	
33000		4	4	10				10	
66000		1	8	10				10	
66000		2	3	10				9	
66000		3	22	10				9	
66000		4	2	10				10	

Analyst:____ M QA

Copy and Past VALUES from

GENERAL				
Vector Fire Technology			Test Parameters	
Product Testing			Min	Max
PG2195		DO	4	
M. Bennett	Note: input lowest and highest decimal for temp	Temp	18.5	21.4
3/28/2025		Conductivity		
96-Hour Acute Toxicity with FHM		pН	6	9
Liquid			•	
≥ 90% average survival of control	TEST	START TIME/INIT:	1447 CS (TW/LG)]
04/03/25	TES	T END TIME/INIT:	1303 TVL	
Pimephales promelas				_
ABS040225.01		CLIENT SAMPLE ID)	LAB ID
4/2/2025		3SFF-ARK batch #	F032425-03X	P250328.06
1				
7 days				
Tox 017			Concentrations (mg	;/L)
USEPA EPA-821-R-02-012		1	Control]
Bath 1		2	4125	
50-100 foot candles		3	8250	
16L:8D		4	16500	
moderately hard fresh water		5	33000	
10		6	66000	
12 oz		7		
250 mL	Food Batch ID	8		1
0.2 mL Artemia nauplii 2 hrs prior to renewal (96-hour test)	491842	9		
> 4				
20 ± 1				
7.5 ± 1.5				

Lopy and	rasi	VALUES	ш
Freatment	Rep	Chamber	
Control	1	24	
Control	2	4	
Control	3	12	
Control	4	22	
4125	1	3	
4125	2	21	
4125	3	20	
4125	4	17	
8250	1	23	
8250	2	7	
8250	3	8	
8250	4	13	
16500	1	6	
16500	2	10	
16500	3	14	
16500	4	2	
33000	1	5	
33000	2	1	
33000	3	18	
33000	4	16	
66000	1	15	
66000	2	19	
66000	3	9	
66000	4	11	
	1		
	2		
	3		
	4		

Version V.1

Client Project Project Number Project Manager Date Sample Received

> Test type Matrix Test Acceptability Test Start Date Test Species Organism Batch Organism Acquired

Organism Acclimation Organism Age Test Protocol **Regional Protocol** Test Location Light Intensity Light Cycle Water Description Organisms per Replicate Test Chamber Size Exposure Volume Feeding Information Test Dissolved Oxygen Test Temperature Conductivity Test pH

ECOANALYSTS, INC.

96-Hour Acute WET Test

V.1	CLIENT Vector Fire Technology		/ DATE RECEIVED 3/28/25 P		PROTOCOL	Tox 017
	PROJECT	Product Testing	TEST START DATE	4/3/25	PROJECT MANAGER	M. Bennett
	CLIENT SAMPLE ID	3SFF-ARK batch #F032425-03X	TEST END DATE	4/7/25	SPECIES	Pimephales promelas
	LAB SAMPLE ID	P250328.06	MATRIX	Liquid	NO. OF ORGANISMS	10

96-Hour Acute Toxicity with FHM

1				· ·	
Day of Test	Concentration (mg/L)	Spiking Amount (mg/L)	Total Volume (mL)	Diluent Type	RFW
	0	0	1000		
	4125	4125	1000		
	8250	8250	1000		
0	16500	16500	1000		
	33000	33000	1000		
	66000	66000	1000		

Day of Test	Concentration (mg/L)	Spiking Amount (mg/L)	Total Volume (mL)
	0	0	1000
	4125	4125	1000
	8250	8250	1000
2	16500	16500	1000
	33000	33000	1000
	66000	66000	1000

Test Dilution Prep

Date	Balance ID	Sample ID (P#)	Water Batch ID	Initials	Comments
					Higher concentrations
					are frothy, 66000
					concentration is
4/3/2025	7	P250328.06	RFW032525.01	LG	slightly viscous-LG 4/3
					mold growing in
4/5/2025	7	P250328.06	RFW040225.01	SN	product jar

V.1	CLIENT	Vector Fire Technology	DATE RECEIVED	3/28/25	PROTOCOL	Tox 017
	PROJECT	Product Testing	TEST START DATE	4/3/25	PROJECT MANAGER	M. Bennett
	CLIENT SAMPLE ID	3SFF-ARK batch #F032425-03X	TEST END DATE	4/7/25	SPECIES	Pimephales promelas
	LAB SAMPLE ID	P250328.06	MATRIX	Liquid	NO. OF ORGANISMS	10

96-Hour Acute Toxicity with FHM

			DO (mg/L)	TEMP (°C)	CONDUCTIVITY	рН	7
		Concentration (mg/L)	> 4	19 - 21	(µS/cm)	6 - 9	Comments
Day 0		Control	9.2	18.9	352	8.0	
Stock		4125	9.2	18.9	439	8.0	
Date	04/03/25	8250	9.2	19.0	537	8.0	
Time	1404	16500	9.2	19.0	733	8.0	
Tech	MM	33000	9.2	19.0	1119	8.0	
Meter #	7	66000	9.2	19.0	1887	8.0	
Day 1		Control	8.3	19.4	352	7.7	
Rep 1		4125	7.3	19.3	435	7.7	
Date	04/04/25	8250	7.1	19.4	528	7.7	
Time	755	16500	6.0	19.4	715	7.6	
Tech	TVL	33000	5.3	19.4	1065	7.6	
Meter #	8	66000	3.2	19.4	1706	7.7	low DO- TVL 4/4/25
Day 2		Control	8.3	19.6	361	7.9	
Rep 2		4125	5.0	19.6	448	7.5	
Date	04/05/25	8250	3.7	19.7	538	7.4	***Test was aerated 4/5/25 SN
Time	1013	16500	1.8	19.7	720	7.3	
Tech	SN	33000	1.1	19.7	1083	7.4	
Meter #	7	66000	1.6	19.6	1784	7.4	
Day 2		Control	9.2	19.4	323	8.2	
Renewal Stock		4125	9.2	19.5	434	8.1	
Date	04/05/25	8250	9.2	19.4	519	8.1	
Time	1118	16500	9.2	19.4	716	8.0	
Tech	SN	33000	9.2	19.3	1099	7.9	
Meter #	7	66000	9.1	19.4	1864	7.8	
Day 3		Control	8.9	20.1	333	8.2	
Rep 3		4125	8.7	20.0	436	8.1	
Date	04/06/25	8250	8.7	20.1	522	8.1	
Time	1536	16500	8.2	19.8	718	7.9	
Tech	KD	33000	7.0	19.8	1103	7.7	
Meter #	7	66000	6.0	19.6	1901	7.7	
Day 4		Control	8.8	19.1	340	8.2	
Rep 4		4125	8.8	19.2	444	8.2	
Date	04/07/25	8250	8.9	19.2	531	8.1	
Time	751	16500	8.5	19.3	731	8.0	
Tech	TVL	33000	8.2	19.4	1128	8.0	
Meter #	7	66000	8.7	19.2	1980	8.2	

V.1	CLIENT	Vector Fire Technology	DATE RECEIVED	3/28/25	PROTOCOL	Tox 017
	PROJECT	Product Testing	TEST START DATE	4/3/25	PROJECT MANAGER	M. Bennett
	CLIENT SAMPLE ID	ARK batch #F032425-03X	TEST END DATE	4/7/25	SPECIES	Pimephales promelas
	LAB SAMPLE ID	P250328.06	MATRIX	Liquid	NO. OF ORGANISMS	10

Abbreviation Key:					50 1100		. onerey							_
NB = No Body			Day 1			Day 2			Day 3		Day 4			
FB = Found Body		Date	04/0)4/25	Date	04/0)5/25	Date	04/0)6/25	Date	04/	07/25	
ST = Stranded		Time	8	05	Time	14	121	Time	06/0	05/04	Time	1	302	
[Tech	T	VL	Tech	S	5N	Tech	١	IL.	Tech	1	VL	
Concentration (mg/L)	REP	Alive	Dead	Obs	Alive	Dead	Obs	Alive	Dead	Obs	Alive	Dead	Obs	Comments
	1	10	0		10	0		10	0		10	0		
Control	2	10	0		10	0		10	0		10	0		
	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		10	0		10	0		10	0		
4125	2	10	0		10	0		10	0		10	0		
4125	3	10	0		10	0		10	0		10	0		
	4	10	0		9	0	1NB	9	0		9	0		
	1	10	0		10	0		10	0		10	0		
8250	2	10	0		10	0		10	0		10	0		
	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		10	0		10	0		10	0		
16500	2	10	0		10	0		10	0		10	0		
10500	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		10	0		10	0		10	0		
33000	2	10	0		10	0		10	0		10	0		
55000	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		10	0		10	0		10	0		
66000	2	9	1		9	0		9	0		9	0		
00000	3	10	0		10	0		10	0		9	1		
	4	10	0		10	0		10	0		10	0		
Feed (Time/Init.)														
0.2 mL Artemia nauplii 2														
hrs prior to renewal (96-						NL								
hour test)														

96-Hour Acute Toxicity with FHM

ORGANISM RECEIPT LOG

Date: Time:			ime:			Batch No.			
4/2/25 120				00	O ABSONDERS. 61				
Organism:						:			
		Pim	ephal	es	pron	nel.	25		
Source / S	upplier:								
		AB	5						
No. Ordere	ed:	No.	Receive	ed:		Sou	rce Batch: ection date, hé	tch date etc.):	
87	0	*	955				3/271	25	
Condition	of Organis	sms:		App (Day	roxima t s from ha	e Siz tch, lii	e or Age: fe stage, size	class, etc.):	
(hood					6	days	061	
Shipper:				Bot	L (Trac	king	No.)		
(Fedex			Ч	357	9	735 3	3960	
Condition	of Contain	er:		Rec	eived B	y:			
6	osd				ι	-6			
Container	D.O. (mg/L)	Temp. (°C)	Cond Sa (Inclu Unit	. or I. ude s)	pH (Uni	l ts)	# Dead	% Dead*	Tech. (Initials)
A	21.8	20.4.	381		7.4		2	-	4
в	22.0	20.4	381		7.4		١	0.370	La
*if >10% contac	ct lab manage	r			•				
Notes:									

Organism Receipt Log v1.1

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

DATE:	4/1/2025
SPECIES:	Pimephales promelas
AGE:	5 day
LIFE STAGE:	Larvae
HATCH DATE:	3/27/2025
BEGAN FEEDING:	3/28/2025
FOOD:	Artemia sp.

Water Chemistry Record:	Current	Range
TEMPERATURE:	21°C	22-25°C
SALINITY/CONDUCTIVITY:		
TOTAL HARDNESS (as CaCO ₃):	107 mg/l	80-120 mg/l
TOTAL ALKALINITY (as CaCO3):	85 mg/l	80-100 mg/l
pH:	8.20	7.20-8.20

Comments:

Facility Supervisor

Aquatic BioSystems, Inc • Quality Research Organisms

APPENDIX A1.1

Pimephales promelas (fathead minnow) Reference Toxicant 96-Hour Survival Test
CETIS QC Plot

<mark>Mean:</mark>	<mark>109</mark>	Count:	20	-2s Warning Limit:	<mark>30.1</mark>	-3s Action Limit: 15.8
Sigma:	NA	CV:	71.60%	+2s Warning Limit:	<mark>394</mark>	+3s Action Limit: 751

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2022	Jun	22	14:00	85.27	-23.7	-0.3812			09-2484-6701	03-6339-0355	EcoAnalysts
2		Jul	26	16:15	207.9	98.9	1.004			19-9606-8541	14-4105-6380	EcoAnalysts
3		Oct	18	15:33	126.6	17.6	0.2328			00-1244-9651	13-0675-8972	EcoAnalysts
4		Nov	30	17:05	50.09	-58.87	-1.208			05-6217-6706	05-6087-1351	EcoAnalysts
5	2023	Jan	18	15:48	59.46	-49.5	-0.9415			17-0281-5837	00-7848-0629	EcoAnalysts
6		Feb	22	14:21	423.7	314.7	2.111	(+)		19-9432-7182	17-7365-6004	EcoAnalysts
7		Mar	21	14:05	110	1.006	0.01429			04-0968-3570	09-3250-3169	EcoAnalysts
8		May	24	14:19	79.72	-29.24	-0.4857			20-8461-2086	00-7824-5483	EcoAnalysts
9		Jul	17	16:28	78.89	-30.07	-0.5019			18-7140-7619	00-8079-6291	EcoAnalysts
10		Sep	6	15:55	68.38	-40.59	-0.7244			10-4912-0113	18-0428-8216	EcoAnalysts
11		Oct	20	18:22	218.1	109.2	1.079			07-3619-2172	09-4739-7103	EcoAnalysts
12	2024	Jan	24	15:45	164.4	55.43	0.6393			00-7739-2786	15-8834-9791	EcoAnalysts
13		Mar	6	15:20	118.7	9.725	0.1329			11-6990-9224	11-8218-3094	EcoAnalysts
14		May	30	17:58	27.48	-81.48	-2.141	(-)		11-2670-8770	03-9667-1395	EcoAnalysts
15		Jul	17	15:49	185.6	76.62	0.8278			17-4003-3041	20-4812-4543	EcoAnalysts
16		Sep	11	16:50	122.5	13.49	0.1814			18-4320-0845	00-6696-7108	EcoAnalysts
17		Oct	18	13:10	256.2	147.2	1.329			19-3181-7814	10-5107-4387	EcoAnalysts
18		Dec	3	14:48	59.96	-49	-0.9285			03-9001-6808	19-9463-1325	EcoAnalysts
19	2025	Jan	29	14:33	135.7	26.71	0.3409			01-4802-7696	05-7735-2275	EcoAnalysts
20		Mar	12	14:04	75.06	-33.91	-0.5795			16-4733-4883	12-2190-5381	EcoAnalysts
21		Apr	4	14:05	80.91	-28.05	-0.4627			04-6721-1559	15-4504-9219	EcoAnalysts

Analyst:__MB DM QA:

Page 37 of 74

CETIS Sui	mmary Rep	ort					Re Te	port Date st Code/II	: D:	15 R240	Apr-25 10:4)207.68 / 04	2 (p 1 of 1) -6721-1559
Reference To	oxicant 96-h Acu	ute Survival	Test								Ec	oAnalysts
Batch ID: Start Date: Ending Date: Test Length:	03-8069-6417 04 Apr-25 14:0 08 Apr-25 13:1 95h	Tes 5 Pro 1 Sp Tax	st Type: otocol: ecies: kon:	Survival EPA/821/R-02- Pimephales pro Actinopterygii	-012 (2002) omelas			Analyst: Diluent: Brine: Source:	Mic Rec Not Aqu	chelle Bennet constituted W t Applicable uatic Biosyste	t /ater ems, CO	Age: 7D
Sample ID: Sample Date Receipt Date Sample Age:	07-3392-0710 : 07 Feb-24 : 07 Feb-24 422d 14h	Co Ma CA Cli	de: terial: S (PC): ent:	R240207.68 Copper Internal Lab				Project: Source: Station:	Ref Ref R24	ference Toxic ference Toxic 40207.68	ant ant	
Multiple Com	parison Summa	ary										
Analysis ID	Endpoint		Comp	arison Method		v	NOE	L LO	EL	TOEL	PMSD	S
17-1449-0162	Proportion Sur	vived	Steel N	/lany-One Rank	CSum Test		50	100)	70.71	18.0%	1
Point Estima	te Summary											
Analysis ID	Endpoint		Point I	Estimate Meth	od	v	/ Leve	l µg/	Ľ	95% LCL	95% UCL	S
15-4504-9219	Proportion Sur	vived	Trimm	ed Spearman-k	Kärber		EC50) <mark>80.</mark>	<mark>91</mark>	67.87	96.46	1
Test Accepta	bility					TACI	imits					
Analysis ID	Endpoint		Attribu	ıte	Test Stat	Lower	Uppe	er Ov	erlap	Decision		
15-4504-9219	Proportion Sur	vived	Contro	l Resp	1	0.9	<<	Ye	5	Passes Cr	iteria	
17-1449-0162	2 Proportion Sur	vived	Contro	l Resp	1	0.9	<<	Ye	5	Passes Cr	iteria	
Proportion S	urvived Summa	ry										
Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Мах	Sto	l Err	Std Dev	CV%	%Effect
0	D	4	1.0000	1.0000	1.0000	1.0000	1.000	0.0	000	0.0000	0.00%	0.00%
25		4	0.9500	0.8581	1.0420	0.9000	1.000	0.0	289	0.0577	6.08%	5.00%
50		4	0.7500	0.4453	1.0550	0.6000	1.000	0.0	957	0.1915	25.53%	25.00%
200		4	0.4000	0.0563	0.7437	0.1000	0.600		080 250	0.2160	54.01% 66.67%	00.00% 02.50%
400		4	0.0500	-0.1091	0.2091	0.0000	0.200	0.0	230 500	0.1000	200.00%	92.30 % 95.00%
Drenertion C		-							12505			
Proportion 5		Den 4	D	D 0	D (IVIDO. OE	13506	DOA2000FU/	293004000	900041A
Conc-µg/L	Code	1 0000	1 0000	Rep 3	Kep 4							
0	D	0.0000	0.0000	1.0000	1.0000							
25		0.9000	0.9000	1.0000	0.0000							
50		0.8000	1.0000	0.6000	0.6000							
100		0.4000	0.1000	0.6000	0.5000							
200		0.1000	0.1000	0.1000	0.0000							
400		0.2000	0.0000	0.0000	0.0000							
Proportion S	urvived Binomia	als										
Conc-µg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4							
0	D	10/10	10/10	10/10	10/10							
25		9/10	9/10	10/10	10/10							
5U 100		8/10	10/10	6/10 C/40	6/10 E/40							
100		4/10	1/10	0/10	5/1U 0/40							
∠00 400		1/10 2/10	0/10	0/10	0/10							
400		2/10	0/10	0/10	0/10							

QA: Dh

CETIS Test Data Worksheet

 Report Date:
 15 Apr-25 10:40 (p 1 of 1)

 Test Code/ID:
 R240207.68 / 04-6721-1559

EcoAnalysts

Reference Toxicant 96-h Acute Survival Test

Start Date: End Date: Sample Date:	04 A 08 A 07 Fe	pr-25 pr-25 eb-24	14:05 13:11	Species: Pimephales pron Protocol: EPA/821/R-02-0 Material: Copper	nelas Samp 12 (2002) Samp Samp	le Code: R240207.68 le Source: Reference Toxicant le Station: R240207.68
Conc-µg/L	Code	Rep	Pos	# Exposed	# Survived	Notes
0	D	1	1	10	10	
0	D	2	20	10	10	
0	D	3	6	10	10	
0	D	4	2	10	10	
25		1	11	10	9	
25		2	3	10	9	
25		3	24	10	10	
25		4	22	10	10	
50		1	4	10	8	
50		2	10	10	10	
50		3	16	10	6	
50		4	5	10	6	
100		1	8	10	4	
100		2	15	10	1	
100		3	21	10	6	
100		4	14	10	5	
200		1	17	10	1	
200		2	12	10	1	
200		3	13	10	1	
200		4	23	10	0	
400		1	19	10	2	
400		2	9	10	0	
400		3	18	10	0	
400		4	7	10	0	

Page 39 of 74

Copy and Past VALUES from

1405 MM (TVL)

Concentrations (µg/L)

Max

21.4

9

LOT #

BCCH9104

Treatment	Rep	Chamber
Control	1	19
Control	2	14
Control	3	18
Control	4	5
25	1	16
25	2	23
25	3	8
25	4	11
50	1	12
50	2	6
50	3	7
50	4	4
100	1	15
100	2	20
100	3	24
100	4	13
200	1	21
200	2	3
200	3	1
200	4	22
400	1	2
400	2	9
400	3	17
400	4	10

Version V.1	GENERAL			
Client	Internal			Test Parameters
Associated Test	Various			Min
Compound	Copper Chloride		DO	4
Toxicant	Copper	Note: input lowest and highest decimal for temp	Temp	18.5
Test Type	Reference Toxicant		Conductivity	
Test type	96-Hour Acute Copper Ref Tox with FHM		рН	6
Matrix	Liquid			
Test Acceptability	≥ 90% average survival of control	TEST	START TIME/INIT:	1405 MM (TVL
Test Start Date	04/04/25	TES	T END TIME/INIT:	1311 EM
Test Species	Pimephales promelas			
Organism Batch	ABS040225.01		REFERENCE TO	DXICANT TEST ID
Organism Acquired	4/2/2025		R240	207.68
Organism Acclimation	2			
Organism Age	7 Days			
Test Protocol	TOX 017 / TOX 099			Concentrations (
Regional Protocol	USEPA EPA-821-R-02-012		1	Control
Test Location	Bath 1		2	25
Light Intensity	50-100 foot candles		3	50
Light Cycle	16L:8D		4	100
Water Description	moderately hard fresh water		5	200
Organisms per Replicate	10		6	400
Test Chamber Size	12 oz		_	
Exposure Volume	250 mL	Food Batch ID		
Feeding Information	0.2 mL Artemia nauplii 2 hrs prior to renewal (96-hour test)	311823		
Test Dissolved Oxygen	> 4		-	
Test Temperature	20 ± 1			
Conductivity				
Test pH	7.5 ± 1.5			

V1	CLIENT	Internal	TEST TYPE	Reference Toxicant	PROTOCOL	TOX 017 / TOX 099
	ASSOCIATED TEST	Various	TEST START DATE	4/4/25	TOXICANT	Copper
	REF TOX ID	R240207.68	TEST END DATE	4/8/25	SPECIES	Pimephales promelas
	LOT #	BCCH9104	MATRIX	Liquid	NO. OF ORGANISMS	10
			96-Hour Acute Copp	er Ref Tox with F	HM	
			Dilution Preparation (S	erial dilute by 50%)		
		CuCl ₂ *2H ₂ 0 Stock	Target Stock Solution	Volume of Diluent	Amt. of Toxicant (ml)	
		Solution (µg/L)	Conc. (µg/L)	(mLs)	Ame. of Toxicant (me)	
		400,000	400	2000	2.00	
		400,000	200	2000	1.00	
		400,000	100	2000	0.50	

Test Dilution Prep

Date	Balance ID	Water Batch ID	Initials	Highest Concentration Prepared	Comments
4/4/2025	7	RFW040225.01	EM	400	
4/6/2025	7	RFW040225.01	KD	400	

Water Quality

			DO (mg/L)	TEMP (°C)	CONDUCTIVITY	рН
		Concentration (µg/L)	> 4	20 ± 1	(µS/cm)	7.5 ± 1.5
Day 0 (Stock)	Control	9.2	20.6	337	8.3
Date	4/4/2025	25	9.2	20.8	321	8.3
Time	1158	50	9.2	20.5	322	8.4
Tech	EM	100	9.2	20.8	322	8.4
Meter #	7	200	9.2	20.6	321	8.4
		400	9.2	20.6	322	8.3
Daily WQ		Day 1	Day 2	Day 3	Day 4	
Meter	#	T16	T16	T17		
Temp. O	ld	19.8	19.7	20.0		
Temp. Ne	w		19.6			
Day 4		Control	7.6	19.6	342	7.7
Replicate #	1	25	8.2	19.6	330	7.9
Date	4/8/2025	50	8.0	19.7	330	7.9
Time	1104	100	8.3	19.7	328	8.0
Tech	EM	200	8.5	19.4	323	8.0
Meter #	10	400	8.5	19.7	330	8.0

Comments

V.1	CLIENT	Internal	TEST TYPE	Reference Toxicant	PROTOCOL	TOX 017 / TOX 099
	ASSOCIATED TEST	Various	TEST START DATE	4/4/25	TOXICANT	Copper
	REF TOX ID	R240207.68	TEST END DATE	4/8/25	SPECIES	Pimephales promelas
	LOT #	BCCH9104	MATRIX	Liquid	NO. OF ORGANISMS	10

96-Hour Acute Copper Ref Tox with FHM

Abbreviation Key:					96-HOU	r Acute	Copper	Ket Iox		VI				
NB = No Body			Day 1			Day 2			Day 3			Day 4		
FB = Found Body		Date	04/0)5/25	Date	04/0	06/25	Date	04/0	17/25	Date	04/0	08/25	
ST = Stranded		Time	12	231	Time	13	317	Time	83	35	Time	13	311	
		Tech	5	N	Tech	k	D	Tech	יד	VL	Tech	E	M	
Concentration (µg/L)	REP	Alive	Dead	Obs	Alive	Dead	Obs	Alive	Dead	Obs	Alive	Dead	Obs	Comments
	1	10	0		10	0		10	0		10	0		
Control	2	10	0		10	0		10	0		10	0		
control	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		9	1		9	0		9	0		
25	2	10	0		10	0		10	0		9	1		
	3	10	0		10	0		10	0		10	0		
	4	10	0		10	0		10	0		10	0		
	1	10	0		9	1		9	0		8	1		
50	2	10	0		10	0		10	0		10	0		
50	3	10	0		7	3		7	0		6	1		
	4	10	0		8	2		8	0		6	2		
	1	8	2		6	2		6	0		4	2		
100	2	8	2		3	5		3	0		1	2		
	3	8	2		6	2		6	0		6	0		
	4	8	2		5	3		5	0		5	0		
	1	2	8		2	0		2	0		1	1		
200	2	2	8		1	1		1	0		1	0		
	3	5	5		1	4		1	0		1	0		
	4	5	5		1	4		1	0		0	1		
	1	4	6		4	0		3	1		2	1		
400	2	0	10											
	3	1	9		1	0		0	1					
	4	2	8		1	1		1	0		0	1		
Feed (Time/Init.) 0.2 mL Artemia nauplii 2 hrs prior to renewal (96- hour test)						TW								

ORGANISM RECEIPT LOG

Date:		Tim	ie:			Bat	ch No.		
Ч,	12/25		120	00		1	4BS 04	0225.01	
Organism:						:			
		Pim	ephal	es	pron	nel.	25		
Source / S	upplier:			5. (19 y 19					
		AB	5						
No. Ordere	ed:	No.	Receive	ed:		Sou	rce Batch: ection date, hé	tch date etc.):	
87	0	*	955				3/271	25	
Condition	of Organis	sms:		App (Day	roxima t s from ha	e Siz tch, lii	e or Age: fe stage, size	class, etc.):	
(book					6	days	061	
Shipper:				Bot	L (Trac	king	No.)		
(Fedex			Ч	357	9	735 3	3960	
Condition	of Contain	er:		Rec	eived B	y:			
6	osd				ι	-6			
Container	D.O. (mg/L)	Temp. (°C)	Cond Sa (Inclu Unit	. or I. ude s)	pH (Uni	l ts)	# Dead	% Dead*	Tech. (Initials)
A	21.8	20.4.	381		7.4		2	-	4
в	22.0	20.4	381		7.4		١	0.370	La
*if >10% contac	ct lab manage	r			•				
Notes:									

Organism Receipt Log v1.1

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

DATE:	4/1/2025
SPECIES:	Pimephales promelas
AGE:	5 day
LIFE STAGE:	Larvae
HATCH DATE:	3/27/2025
BEGAN FEEDING:	3/28/2025
FOOD:	Artemia sp.

Water Chemistry Record:	Current	Range
TEMPERATURE:	21°C	22-25°C
SALINITY/CONDUCTIVITY:		
TOTAL HARDNESS (as CaCO ₃):	107 mg/l	80-120 mg/l
TOTAL ALKALINITY (as CaCO3):	85 mg/l	80-100 mg/l
pH:	8.20	7.20-8.20

Comments:

Facility Supervisor

Aquatic BioSystems, Inc • Quality Research Organisms

APPENDIX A2

Safety Data Sheets (SDS)

1. IDENTIFICATION

Product Name Recommended use of the chemical And restrictions on use Company Identification

Customer Information Number Emergency Telephone Number Issue Date Revision Date Supersedes Date Planit Safe[™] 3SFF- USP Surrogate Test Liquid See Section 15 Vector Fire Technology, Inc. 1017 Charles St. Unit B Coatesville, PA 19320 (610) 466-1717 (610) 466-1717 November 17, 2022 April 24, 2025 (Rev. B 042425) March 25, 2025

Safety Data Sheet prepared in accordance with OSHA's Hazard Communication Standard (29 CFR 1910.1200) and the Globally Harmonized System of Classification and Labeling of Chemicals (GHS)

* Refer to Section 9 Physical and Chemical Properties

2. HAZARD IDENTIFICATION

Hazard Classification

Eye damage/Irritation - 4

Label Elements

Hazard Symbols

Hazard Statements

Contact with liquid may cause eye irritation.

Precautionary Statements

Prevention

Wash hands thoroughly after handling. Wear eye protection.

Response

If in eyes: Flush with water for 15 minutes. Remove contact lenses if present and easy to do. If eye irritation persists, get medical advice/attention.

Storage None Disposal

None Other Hazards Not identified

Release Date: Nov. 17, 2022 Latest Revision Date: April 24, 2025 (Rev. B 042425)

Specific Concentration Limits

The values listed below represent the percentages of ingredients of unknown toxicityAcute oral toxicity<5%</td>Acute inhalation toxicity<5%</td>Acute aquatic toxicity<5%</td>

3. COMPOSITION / INFORMATION ON INGREDIENTS

This product is a mixture

Component	CAS Number	Concentration
Water	7732-18-5	88-91%
Potassium Chloride	7447-40-7	<2%
Sodium Benzoate	532-32-1	<1%
Potassium Sorbate	24634-61-5	<1%
Propylene Glycol	57-55-6	<9%
Xanthan Gum	11138-66-2	<2%

4. FIRST-AID MEASURES

Description of necessary first-aid measures

Inhalation

No specific treatment is necessary since this material is not likely to be hazardous by inhalation. If exposed to excessive levels of airborne aerosol mists, remove to fresh air. Seek medical attention if effects occur.

Eyes

Immediately flood the eye with plenty of water for at least 15 minutes, holding the eye open. Obtain medical attention if irritation persists.

Skin

Wash skin thoroughly with soap and water. Launder clothing before re-use.

Ingestion

Swallowing less than an ounce is not expected to cause significant harm. For larger amounts, do not induce vomiting. Give milk or water. Never administer anything by mouth to an unconscious person. Seek medical attention.

Most important symptoms/effects, acute and delayed

Aside from the information found under Description of necessary first-aid measures (above) and indication of immediate medical attention and special treatment needed, no additional symptoms

Release Date: Nov. 17, 2022
Latest Revision Date: April
24, 2025 (Rev. B 042425)

and effects are anticipated.

Indication of immediate medical attention and special treatment needed None

Notes to Physicians

Treat symptomatically

5. FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

Product is not an extinguishing media. Use appropriate for surrounding materials.

Specific hazards arising from the chemical

None known

Specific protective actions for fire-fighters None

6. ACCIDENTIAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

NOTE: Review FIRE-FIGHTING MEASURES and HANDLING (Personnel) sections before proceeding with clean-up. Use appropriate Personal Protective Equipment during clean-up. Exercise caution, surfaces may be slippery.

Environmental Precautions

Stop flow if possible. Dilute with water to meet existing water quality standards. Flush area with water.

Methods and materials for containment and clean-up

Contain and absorb using appropriate inert materials and transfer into suitable containers for recovery or disposal in accordance with federal, state and local regulations.

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with eyes, skin and clothing. Avoid ingestion or inhalation. Rinse skin and eyes thoroughly in case of contact. Review HAZARDS and FIRST-AID sections.

Conditions for safe storage

Store in original containers or tanks designed for product storage, between 35°F and 120°F (2°C and 49°C). Storage area should be cool, dry, under cover and out of direct sunlight.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

Exposure limits are listed below, if they exist.

Appropriate engineering controls

Special ventilation is not required.

Individual protection measures Respiratory Protection

Recommended exposure limits (OSHA-PEL and ACGIH-TLV) have not been determined for this material. The need for respiratory protection is not required.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance	
Physical State	Liquid
Color	Water White
Odor	Bland
Odor Threshold	No data available
рН	6.3 – 7.2
Specific Gravity	1.00 – 1.02 @ 20 deg. C
Boiling Range/Point (°C/F)	84.4 C, 185 F
Melting Point	4.4 C, 24 F
Flash Point	n/a - water based liquid
Vapor Pressure	No data available
Evaporation Rate (BuAc=1)	<1
Solubility in Water	Soluble (100%) – requires physical agitation
Vapor Density (Air = 0)	n/a
VOC %	No data available
Partition coefficient (n-	
octanol/water)	No data available
Viscosity (centipoise)	200 – 8000 cps*
Auto-Ignition Temperature	n/a
Decomposition Temperature	No data available
Upper explosive limit	n/a
Lower explosive limit	n/a
Flammability (solid, gas)	n/a

* Non-Newtonian shear sensitive liquid. Viscosity varies with shear rate.

10. STABILITY AND REACTIVITY

Reactivity

No data available

Chemical Stability

Stable

Possibility of Hazardous Reactions Hazardous polymerization will not occur

Conditions to Avoid

Contact with incompatible materials

Incompatible Materials

Water reactive materials- burning metals - electrically energized equipment

Hazardous Decomposition Products

None

11. TOXICOLOGICAL INFORMATION

Acute Toxicity

Mammalian Toxicity – This product has not been tested as a whole for acute oral and inhalation toxicity, primary eye irritation, or primary skin irritation.

Specific Target Organ Toxicity (STOT) – single exposure No data available

Specific Target Organ Toxicity (STOT) – repeat exposure No data available

Serious Eye Damage/Irritation No data available

Respiratory or Skin Sensitization No data available

Carcinogenicity No data available

Germ Cell Mutagenicity

No data available

Reproductive Toxicity No data available

Aspiration Hazard No data available

12. ECOLOGICAL INFORMATION

Ecotoxicity

See Ecotoxicological Information Aquatic Toxicity below.

Mobility in Soil No relevant studies identified

Persistence/Degradability See Environmental Fate below

No relevant studies identified Bioaccumulative Potential

Other Adverse Effects No relevant studies identified

Ecotoxicological Information Aquatic Toxicity

The acute toxicity of Planit Safe[™] 3SFF SP-100 Surrogate Test Liquid has been studied and determined to have no adverse effects when evaluated in a 96-hour dilution series test using Fathead Minnows, *Pimephales promelas*, as a test specimen. This testing protocol was performed in accordance with EPA Method 2000.0. The 96-hour EC₅₀/LC₅₀ was determined to be 63,710 mg/L. It is unlikely that Planit Safe in the environment would approach the highest concentration used in this dilution series.

Environmental Fate

	Method	As shipped (mg/L)	As proportioned (diluted) at 3% with water (mg/L)
BOD ₅	SM 5210 B	99,300	2,979
COD	EPA 410.4	183,667	5,510

13. DISPOSAL CONSIDERATIONS

Planit Safe[™] 3SFF- USP Surrogate Test Liquid Concentrate, as sold, is not a RCRA-listed waste or hazardous waste as characterized by 40 CFR 261. However, state and local requirements for waste disposal may be more restrictive or otherwise different from Federal regulations. Proper clean-up and disposal of this material into drains, sewers, or waterways is not expected to cause an environmental impact, however, consult with state and local authorities having jurisdiction regarding the proper regulations or concerns encompassed within your site disposal plan.

Planit Safe[™] 3SFF- USP Surrogate Test Liquid Concentrate can be treated by wastewater treatment facilities. Discharge into biological sewer treatment facilities may be done with prior approval. Specific concerns are high BOD load. Dilution will reduce BOD and COD factors proportionately. Low dosage flow rate to the treatment plant may be helpful. Disposal should be made in accordance with federal, state and local regulations. **This material is non-foaming**.

14. TRANSPORT INFORMATION

Shipping information Proper Shipping Name: Not a DOT-Hazardous Substance Hazard Class: Not Regulated UN Number: None

This information is not intended to convey all transportation classifications that may apply to this product. Classifications may vary by container volume and by regional regulations. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules when transporting this material.

15. REGULATORY INFORMATION

U.S. Federal Regulations

Toxic Substances Control Act (TCSA)

All components of this product are listed in the TSCA inventory.

Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III

SARA Title III Sect. 302/304

There are no components of this material with known CAS numbers that are on the Extremely Hazardous Substances (EHS) list.

SARA Title III Sect. 311/312 Categorization

This material does not contain any components subject to Sections 311 and 312 reporting requirements.

SARA Title III Sect. 313

This material does not contain any components subject to Sections 313 reporting requirements.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA)

This material does not contain any components that are subject to the reporting requirements of the CERCLA.

16. OTHER INFORMATION

NFPA Ratings

NFPA Code for Health - 0

NFPA Code for Flammability - 0

NFPA Code for Reactivity - 0

NFPA Code for Special Hazards - None

State Regulations

Pennsylvania Right-To-Know Hazardous Substance List

PA Hazardous Substance present at levels greater than 1% None

16. OTHER INFORMATION

Legend

ACGIH: American Conference of Governmental Industrial Hygienists BOD5: Biochemical Oxygen Demand (5 day) CAS#: Chemical Abstracts Service Number COD: Chemical Oxygen Demand EC50: Effect Concentration 50% IARC: International Agency for Research on Cancer LC50: Lethal Concentration 50% LD50: Lethal Dose 50% N/A: Denotes no applicable information found or available OSHA: Occupational Safety and Health Administration PEL: Permissible Exposure Limit RQ: Reportable Quantity STEL: Short Term Exposure Limit TLV: Threshold Limit Value TSCA: Toxic Substance Control Act

Release Date: April 24, 2025 Replaces: March 25, 2025 Changes made: Updated to include most recent environmental fate (BOD₅ and COD) data.

Information Source and References

The information contained herein is furnished without warranty either expressed or implied. This data sheet is not part of any contract of sale. The information contained herein is believed to be correct or is obtained from sources believed to be generally reliable. However, it is the responsibility of the user of these materials to investigate, understand and comply with federal, state and local guidelines and procedures for safe handling and use of these materials. Vector Fire Technology, Inc. shall not be liable for any loss or damage arising directly or indirectly from the use of this product and Vector Fire Technology, Inc. assumes no obligation or liabilities for reliance on the information contained herein or omissions herefrom.

1. IDENTIFICATION

Product Name Recommended use of the chemical And restrictions on use Company Identification	Planit Safe [™] 3SFF SP-100 Surrogate Test Liquid See Section 15 Vector Fire Technology, Inc. 1017 Charles St. Unit B
	Coatesville, PA 19320
Customer Information Number	(610) 466-1717
Emergency Telephone Number	(610) 466-1717
Issue Date	Nov. 8, 2023
Revision Date	April 24, 2025 – Rev. B 042425
Supersedes Date	03/21/25
Safety Data Sheet prepared in accordance with	OSHA's Hazard Communication Standard (29 CFR 1910.1200)

and the Globally Harmonized System of Classification and Labeling of Chemicals (GHS)

* Refer to Section 9 Physical and Chemical Properties

2. HAZARD IDENTIFICATION

Hazard Classification

Eye damage/Irritation - 4

Label Elements

Hazard Symbols

Signal Word: Warning

Hazard Statements

Contact with liquid may cause eye irritation.

Precautionary Statements

Prevention

Wash hands thoroughly after handling. Wear eye protection.

Responses

Response

If in eyes: Flush with water for 15 minutes. Remove contact lenses if present and easy to do. If eye irritation persists, get medical advice/attention.

Storage None Disposal None Other Hazards Not identified

2. HAZARD IDENTIFICATION

Specific Concentration Limits

The values listed below represent the percentages of ingredients of unknown toxicityAcute oral toxicity<5%</td>Acute inhalation toxicity<5%</td>Acute aquatic toxicity<5%</td>

3. COMPOSITION / INFORMATION ON INGREDIENTS

This product is a mixture

Component	CAS Number	Concentration
Water	7732-18-5	94-98%
Potassium Chloride	7447-40-7	<2%
Sodium Benzoate	532-32-1	<1%
Potassium Sorbate	24634-61-5	<1%
Xanthan Gum	11138-66-2	<1%
Hydroxypropyl Methylcellulose	9904-65-3	<1%

4. FIRST-AID MEASURES

Description of necessary first-aid measures

Inhalation

No specific treatment is necessary since this material is not likely to be hazardous by inhalation. If exposed to excessive levels of airborne aerosol mists, exit and relocate to fresh air. Seek medical attention if effects occur.

Eyes

Immediately flood the eye with plenty of water for at least 15 minutes, holding the eye open. Obtain medical attention if irritation persists.

Skin

Wash skin thoroughly with soap and water. Launder clothing before re-use.

Ingestion

Swallowing less than an ounce is not expected to cause significant harm. For larger amounts, do not induce vomiting. Give milk or water. Never administer anything by mouth to an unconscious person. Seek medical attention.

FIRST-AID MEASURES 4

Most important symptoms/effects, acute and delayed

Aside from the information found under Description of necessary first-aid measures (above) and indication of immediate medical attention and special treatment needed, no additional symptoms and effects are anticipated.

Indication of immediate medical attention and special treatment needed None

Notes to Physicians

Treat symptomatically

5. FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

Product is not an extinguishing media. Use appropriate for surrounding materials.

Specific hazards arising from the chemical None known

Specific protective actions for fire-fighters None

ACCIDENTIAL RELEASE MEASURES 6.

Personal precautions, protective equipment and emergency procedures

NOTE: Review FIRE-FIGHTING MEASURES and HANDLING (Personnel) sections before proceeding with clean-up. Use appropriate Personal Protective Equipment during clean-up. Exercise caution, surfaces may be slippery.

Environmental Precautions

Stop flow if possible. Dilute with water to meet existing water quality standards. Flush area with water.

Methods and materials for containment and clean-up

Contain and absorb using appropriate inert materials and transfer into suitable containers for recovery or disposal in accordance with federal, state and local regulations.

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with eyes, skin and clothing. Avoid ingestion or inhalation. Rinse skin and eyes thoroughly in case of contact. Review HAZARDS and FIRST-AID sections.

Conditions for safe storage

Store in original containers or tanks designed for product storage, between 35°F and 120°F

Release Date: Nov. 8, 2023 Latest Revision Date: April 24, 2025 (Rev. B 042425)

SAFETY DATA SHEET **#MS3SFF SP-100**

(2°C and 49°C). Storage area should be cool, dry, under cover and out of direct sunlight.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

Exposure limits are listed below, if they exist.

Appropriate engineering controls

Special ventilation is not required.

Individual protection measures Respiratory Protection

Recommended exposure limits (OSHA-PEL and ACGIH-TLV) have not been determined for this material. The need for respiratory protection is not required.

9. PHYSICAL AND CHEMICAL PROPERTIES

An	pearance	<u> </u>
ΠP	pearance	,

Liquid
Water White
Bland
No data available
6.3 – 7.2
1.00 – 1.02 @ 20 deg. C
84.4 C, 185 F
4.4 C, 24 F
n/a - water based liquid
No data available
<1
Soluble (100%) – requires physical agitation
n/a
No data available
No data available
200 – 4000 cps*
n/a
No data available
n/a
n/a
n/a

* Non-Newtonian shear sensitive liquid. Viscosity varies with shear rate.

10. STABILITY AND REACTIVITY

Reactivity

No data available

Chemical Stability

Stable

Possibility of Hazardous Reactions Hazardous polymerization will not occur

Conditions to Avoid

Contact with incompatible materials

Incompatible Materials

Water-reactive materials - burning metals - electrically energized equipment

Hazardous Decomposition Products

None

11. TOXICOLOGICAL INFORMATION

Acute Toxicity

Mammalian Toxicity – This product has not been tested as a whole for acute oral and inhalation toxicity, primary eye irritation, or primary skin irritation.

Specific Target Organ Toxicity (STOT) – single exposure No data available

Specific Target Organ Toxicity (STOT) – repeat exposure No data available

Serious Eye Damage/Irritation

No data available

Respiratory or Skin Sensitization No data available

Carcinogenicity No data available

Germ Cell Mutagenicity

No data available

Reproductive Toxicity No data available

Aspiration Hazard No data available

12. ECOLOGICAL INFORMATION

Ecotoxicity

See Ecotoxicological Information Aquatic Toxicity below.

Mobility in Soil No relevant studies identified

Persistence/Degradability See Environmental Fate below

No relevant studies identified Bioaccumulative Potential

Other Adverse Effects No relevant studies identified

Ecotoxicological Information Aquatic Toxicity

The acute toxicity of Planit SafeTM 3SFF SP-100 Surrogate Test Liquid has been studied and determined to have no adverse effects when evaluated in a 96-hour dilution series test using Fathead Minnows, *Pimephales promelas*, as a test specimen. This testing protocol was performed in accordance with EPA Method 2000.0. The 96-hour EC₅₀/LC₅₀ was determined to be >66,000 mg/L. This was the highest concentration tested in the dilution series, and it is unlikely that Planit Safe in the environment would approach this concentration.

Environmental Fate

	Method	As shipped (mg/L)	As proportioned (diluted) at 3% with water (mg/L)
BOD ₅	SM 5210 B	14,233	427
COD	EPA 410.4	25,300	759

13. DISPOSAL CONSIDERATIONS

Planit Safe[™] 3SFF SP-100 Surrogate Test Liquid Concentrate, as sold, is not a RCRA-listed waste or hazardous waste as characterized by 40 CFR 261. However, state and local requirements for waste disposal may be more restrictive or otherwise different from Federal regulations. Proper clean-up and disposal of this material into drains, sewers, or waterways is not expected to cause an environmental impact, however, consult with state and local authorities having jurisdiction regarding the proper regulations or concerns encompassed within your site disposal plan.

Planit Safe[™] 3SFF SP-100 Surrogate Test Liquid Concentrate can be treated by wastewater treatment facilities. Discharge into biological sewer treatment facilities may be done with prior approval. Specific concerns are high BOD load. Dilution will reduce BOD and COD factors proportionately.

Low dosage flow rate to the treatment plant may be helpful. Disposal should be made in accordance with federal, state and local regulations. **This material is non-foaming**.

Release Date: Nov. 8, 2023
Latest Revision Date: April
24, 2025 (Rev. B 042425)

SAFETY DATA SHEET #MS3SFF SP-100

14. TRANSPORT INFORMATION

Shipping information Proper Shipping Name: Not a DOT-Hazardous Substance Hazard Class: Not Regulated UN Number: None

This information is not intended to convey all transportation classifications that may apply to this product. Classifications may vary by container volume and by regional regulations. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules when transporting this material.

15. REGULATORY INFORMATION

U.S. Federal Regulations

Toxic Substances Control Act (TCSA)

All components of this product are listed in the TSCA inventory.

Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III

SARA Title III Sect. 302/304

There are no components of this material with known CAS numbers that are on the Extremely Hazardous Substances (EHS) list.

SARA Title III Sect. 311/312 Categorization

This material does not contain any components subject to Sections 311 and 312 reporting requirements.

SARA Title III Sect. 313

This material does not contain any components subject to Sections 313 reporting requirements.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA)

This material does not contain any components that are subject to the reporting requirements of the CERCLA.

16. OTHER INFORMATION

NFPA Ratings

NFPA Code for Health - 0

NFPA Code for Flammability - 0

NFPA Code for Reactivity - 0

NFPA Code for Special Hazards - None

State Regulations

Pennsylvania Right-To-Know Hazardous Substance List

PA Hazardous Substance present at levels greater than 1% None

16. OTHER INFORMATION

Legend

ACGIH: American Conference of Governmental Industrial Hygienists BOD5: Biochemical Oxygen Demand (5 day) CAS#: Chemical Abstracts Service Number COD: Chemical Oxygen Demand EC50: Effect Concentration 50% IARC: International Agency for Research on Cancer LC50: Lethal Concentration 50% LD50: Lethal Dose 50% N/A: Denotes no applicable information found or available OSHA: Occupational Safety and Health Administration PEL: Permissible Exposure Limit RQ: Reportable Quantity STEL: Short Term Exposure Limit TLV: Threshold Limit Value TSCA: Toxic Substance Control Act

Release Date: Apr 24, 2025 Replaces: March 21, 2025 Changes made: Updated to include most recent environmental fate (BOD₅ and COD) data.

Information Source and References

The information contained herein is furnished without warranty either expressed or implied. This data sheet is not part of any contract of sale. The information contained herein is believed to be correct or is obtained from sources believed to be generally reliable. However, it is the responsibility of the user of these materials to investigate, understand and comply with federal, state and local guidelines and procedures for safe handling and use of these materials. Vector Fire Technology, Inc. shall not be liable for any loss or damage arising directly or indirectly from the use of this product and Vector Fire Technology, Inc. assumes no obligation or liabilities for reliance on the information contained herein or omissions herefrom.

1. IDENTIFICATION

Product Name Recommended use of the chemical And restrictions on use Company Identification

Customer Information Number Emergency Telephone Number Issue Date Revision Date Supersedes Date Planit Safe[™] 3SFF- ARK Surrogate Test Liquid See Section 15 Vector Fire Technology, Inc. 1017 Charles St. Unit B Coatesville, PA 19320 (610) 466-1717 (610) 466-1717 Nov. 17, 2022 April 24, 2025 – Rev. B 042425 March 25, 2025

Safety Data Sheet prepared in accordance with OSHA's Hazard Communication Standard (29 CFR 1910.1200) and the Globally Harmonized System of Classification and Labeling of Chemicals (GHS)

* Refer to Section 9 Physical and Chemical Properties

2. HAZARD IDENTIFICATION

Hazard Classification

Eye damage/Irritation - 4

Label Elements

Hazard Symbols

.

Hazard Statements

Contact with liquid may cause eye irritation.

Precautionary Statements

Prevention

Wash hands thoroughly after handling. Wear eye protection.

Response

If in eyes: Flush with water for 15 minutes. Remove contact lenses if present and easy to do. If eye irritation persists, get medical advice/attention.

Storage None Disposal

None Other Hazards Not identified

Release Date: Nov. 17, 2022 Latest Revision Date: April 24, 2025 (Rev. B 042425)

Specific Concentration Limits

The values listed below represent the percentages of ingredients of unknown toxicityAcute oral toxicity<5%</td>Acute inhalation toxicity<5%</td>Acute aquatic toxicity<5%</td>

3. COMPOSITION / INFORMATION ON INGREDIENTS

This product is a mixture

Component	CAS Number	Concentration
Water	7732-18-5	94-98%
Potassium Chloride	7447-40-7	<2%
Sodium Benzoate	532-32-1	<1%
Potassium Sorbate	24634-61-5	<1%
Xanthan Gum	11138-66-2	<2%
Hydroxypropyl Methylcellulose	9904-65-3	<1%
Diutan Gum	125005-87-0	<1%
Triethanolamine-99%	102-71-6	<1%

4. FIRST-AID MEASURES

Description of necessary first-aid measures

Inhalation

No specific treatment is necessary since this material is not likely to be hazardous by inhalation. If exposed to excessive levels of airborne aerosol mists, remove to fresh air. Seek medical attention if effects occur.

Eyes

Immediately flood the eye with plenty of water for at least 15 minutes, holding the eye open. Obtain medical attention if irritation persists.

Skin

Wash skin thoroughly with soap and water. Launder clothing before re-use.

Ingestion

Swallowing less than an ounce is not expected to cause significant harm. For larger amounts, do not induce vomiting. Give milk or water. Never administer anything by mouth to an

unconscious person. Seek medical attention.

Most important symptoms/effects, acute and delayed

Aside from the information found under Description of necessary first-aid measures (above) and indication of immediate medical attention and special treatment needed, no additional symptoms and effects are anticipated.

Indication of immediate medical attention and special treatment needed None

Notes to Physicians

Treat symptomatically

5. FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

Product is not an extinguishing media. Use appropriate for surrounding materials.

Specific hazards arising from the chemical None known

Specific protective actions for fire-fighters None

6. ACCIDENTIAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

NOTE: Review FIRE-FIGHTING MEASURES and HANDLING (Personnel) sections before proceeding with clean-up. Use appropriate Personal Protective Equipment during clean-up. Exercise caution, surfaces may be slippery.

Environmental Precautions

Stop flow if possible. Dilute with water to meet existing water quality standards. Flush area with water.

Methods and materials for containment and clean-up

Contain and absorb using appropriate inert materials and transfer into suitable containers for recovery or disposal in accordance with federal, state and local regulations.

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with eyes, skin and clothing. Avoid ingestion or inhalation. Rinse skin and eyes thoroughly in case of contact. Review HAZARDS and FIRST-AID sections.

Conditions for safe storage

Store in original containers or tanks designed for product storage, between 35°F and 120°F (2°C and 49°C). Storage area should be cool, dry, under cover and out of direct sunlight.

Release Date: Nov. 17, 2022 Latest Revision Date: April 24, 2025 (Rev. B 042425)

SAFETY DATA SHEET #MS3SFF-ARK

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

Exposure limits are listed below, if they exist.

Appropriate engineering controls

Special ventilation is not required.

Individual protection measures Respiratory Protection

Recommended exposure limits (OSHA-PEL and ACGIH-TLV) have not been determined for this material. The need for respiratory protection is not required.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance	
Physical State	Liquid
Color	Water White
Odor	Bland
Odor Threshold	No data available
рН	6.6 - 8.0
Specific Gravity	1.00 – 1.02 @ 20 deg. C
Boiling Range/Point (°C/F)	84.4 C, 185 F
Melting Point	4.4 C, 24 F
Flash Point	n/a - water based liquid
Vapor Pressure	No data available
Evaporation Rate (BuAc=1)	<1
Solubility in Water	Soluble (100%) – requires physical agitation
Vapor Density (Air = 0)	n/a
VOC %	No data available
Partition coefficient (n-	
octanol/water)	No data available
Viscosity (centipoise)	200 – 8000 cps*
Auto-Ignition Temperature	n/a
Decomposition Temperature	No data available
Upper explosive limit	n/a
Lower explosive limit	n/a
Flammability (solid, gas)	n/a

* Non-Newtonian shear sensitive liquid. Viscosity varies with shear rate.

10. STABILITY AND REACTIVITY

Reactivity

No data available

Chemical Stability

Stable

Possibility of Hazardous Reactions Hazardous polymerization will not occur

Conditions to Avoid

Contact with incompatible materials

Incompatible Materials

Water reactive materials- burning metals - electrically energized equipment

Hazardous Decomposition Products

None

11. TOXICOLOGICAL INFORMATION

Acute Toxicity

Mammalian Toxicity – This product has not been tested as a whole for acute oral and inhalation toxicity, primary eye irritation, or primary skin irritation.

Specific Target Organ Toxicity (STOT) – single exposure No data available

Specific Target Organ Toxicity (STOT) – repeat exposure No data available

Serious Eye Damage/Irritation

No data available

Respiratory or Skin Sensitization No data available

Carcinogenicity No data available

Germ Cell Mutagenicity

No data available

Reproductive Toxicity No data available

Aspiration Hazard No data available

12. ECOLOGICAL INFORMATION

Ecotoxicity

See Ecotoxicological Information Aquatic Toxicity below.

Mobility in Soil No relevant studies identified

Persistence/Degradability See Environmental Fate below

No relevant studies identified Bioaccumulative Potential

Other Adverse Effects No relevant studies identified

Ecotoxicological Information Aquatic Toxicity

The acute toxicity of Planit SafeTM 3SFF SP-100 Surrogate Test Liquid has been studied and determined to have no adverse effects when evaluated in a 96-hour dilution series test using Fathead Minnows, *Pimephales promelas*, as a test specimen. This testing protocol was performed in accordance with EPA Method 2000.0. The 96-hour EC₅₀/LC₅₀ was determined to be >66,000 mg/L. This was the highest concentration tested in the dilution series, and it is unlikely that Planit Safe in the environment would approach this concentration.

Environmental Fate

	Method	As shipped (mg/L)	As proportioned (diluted) at 3% with water (mg/L)	At 6% with water (mg/L)
BOD ₅	SM 5210 B	13,933	418	836
COD	EPA 410.4	25,433	763	1,526

13. DISPOSAL CONSIDERATIONS

Planit Safe[™] 3SFF- ARK Surrogate Test Liquid Concentrate, as sold, is not a RCRA-listed waste or hazardous waste as characterized by 40 CFR 261. However, state and local requirements for waste disposal may be more restrictive or otherwise different from Federal regulations. Proper clean-up and disposal of this material into drains, sewers, or waterways is not expected to cause an environmental impact, however, consult with state and local authorities having jurisdiction regarding the proper regulations or concerns encompassed within your site disposal plan.

Planit Safe[™] 3SFF- ARK Surrogate Test Liquid Concentrate can be treated by wastewater treatment facilities. Discharge into biological sewer treatment facilities may be done with prior approval. Specific concerns are high BOD load. Dilution will reduce BOD and COD factors proportionately. Low dosage flow rate to the treatment plant may be helpful. Disposal should be made in accordance with federal, state and local regulations. **This material is non-foaming**.

14. TRANSPORT INFORMATION

Shipping information Proper Shipping Name: Not a DOT-Hazardous Substance Hazard Class: Not Regulated UN Number: None

This information is not intended to convey all transportation classifications that may apply to this product. Classifications may vary by container volume and by regional regulations. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules when transporting this material.

15. REGULATORY INFORMATION

U.S. Federal Regulations

Toxic Substances Control Act (TCSA)

All components of this product are listed in the TSCA inventory.

Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III

SARA Title III Sect. 302/304

There are no components of this material with known CAS numbers that are on the Extremely Hazardous Substances (EHS) list.

SARA Title III Sect. 311/312 Categorization

This material does not contain any components subject to Sections 311 and 312 reporting requirements.

SARA Title III Sect. 313

This material does not contain any components subject to Sections 313 reporting requirements.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA)

This material does not contain any components that are subject to the reporting requirements of the CERCLA.

16. OTHER INFORMATION

NFPA Ratings

NFPA Code for Health - 0

NFPA Code for Flammability - 0

NFPA Code for Reactivity - 0

NFPA Code for Special Hazards - None

State Regulations

Pennsylvania Right-To-Know Hazardous Substance List

PA Hazardous Substance present at levels greater than 1% None

16. OTHER INFORMATION

Legend

ACGIH: American Conference of Governmental Industrial Hygienists BOD5: Biochemical Oxygen Demand (5 day) CAS#: Chemical Abstracts Service Number COD: Chemical Oxygen Demand EC50: Effect Concentration 50% IARC: International Agency for Research on Cancer LC50: Lethal Concentration 50% LD50: Lethal Dose 50% N/A: Denotes no applicable information found or available OSHA: Occupational Safety and Health Administration PEL: Permissible Exposure Limit RQ: Reportable Quantity STEL: Short Term Exposure Limit TLV: Threshold Limit Value TSCA: Toxic Substance Control Act

Release Date: Apr. 24, 2025 Replaces: March 25, 2025 Changes made: Updated to include most recent environmental fate (BOD₅ and COD) data.

Information Source and References

The information contained herein is furnished without warranty either expressed or implied. This data sheet is not part of any contract of sale. The information contained herein is believed to be correct or is obtained from sources believed to be generally reliable. However, it is the responsibility of the user of these materials to investigate, understand and comply with federal, state and local guidelines and procedures for safe handling and use of these materials. Vector Fire Technology, Inc. shall not be liable for any loss or damage arising directly or indirectly from the use of this product and Vector Fire Technology, Inc. assumes no obligation or liabilities for reliance on the information contained herein or omissions herefrom.
APPENDIX B

Chain of Custody

CHAIN OF CUSTODY

EcoAnalysts, Inc. 4770 NE View Dr., Port Gamble, WA. 98364 Tel: (360) 297-6040

Destination: EcoAnalysts PG Destination Contact: Michelle Bennett				Sample Originator (Organization): Vector Fire Technology, Inc.						sults To: Ve	ctor Fire Tech	nnology, li	nc.	Phone: 610-662-3055			
										Contact Name: Fay Purvis					Fax:N/A		
Date: 3/31/2025 Address: 1017 Charles St. Unit B, Coatesville, PA 1					le, PA 19320			Address: 1017 Charles St. Unit B, Coatesville, PA 19320					Email: fpurvis@vectorfire.net				
um-Around-Time: Standard								Analyzan:					Invoicing To: Poh P	oicing To: Poh Parker e mail: marker@vectorfire not			
Tojoci Hamo, Floudol Leading													Comments or Special Instructions:				
			Fax: N														
ontract	/PO: Ref #PG2195, Vector Fire Te	echnology, Inc. P.O F03262	25-01 E-mai	-01 E-mail: tpurvis@vectorfire.net													
No.	Sample ID	Secondary ID: Replicate, X of Y, etc.	Matrix	Volume/Mass	Date	Time				·			Preservation	Sample Temp Upon Receipt		LAB ID	
1 35	FF-ARK batch #F032425-03X		Gel	IL	03/24/25	4:45PM							None	16.2	P2	50328.06	
2 35	FF SP-100 batch #F032425-02X		Gel	IL	03/24/25	5:30PM							None	16.2	P2	50328.07	
3 35	FF-USP batch #F032425-01X		Gel	IL ,	03/24/25	3:10PM							None	13.2	P2	50328.08	
4																	
5																1919	
6																	
7											10.00						
8										1.200						•	
9																2	
10																(s. •	
11																	
12								19						S			
13																	
14																	
15																	
16																	
17																	
18																	
19																	
20																	
Relinquished by: Jame: Fay Purvis			Received by: Print Name: Nicole Lundgren				Relinquished by: Print Name:						Received by: Print Name:			Matrix Codes	
																FW = Fresh Water	
Signature: Fay Purvis			Signature:					Signature:					Signature:			SB = Salt & Brackish Water	
Affiliation: Vector Fire Technology, Inc.			Affiliation: EcoAnalysts					Affiliation:					Affiliation:			SS = Soil & Sediment	
Date/Time:3/31/25 10:53 AM			Date/Time: 3/28/25 12:20PM					Date/Time:					Date/Time:			TS = Tissue	

.....

PAGE of