Aqua Survey, Inc.

FINAL REPORT

PLANIT SAFE 3X3-5000 AR-AFFF SURROGATE TEST LIQUID ACUTE EFFECTS ON THE KILLIFISH, *FUNDULUS HETEROCLITUS*

STUDY # 36-037

469 Point Breeze Road Flemington, NJ 08822

Phone: 908-788-8700 Fax: 908-788-9165 mail@aquasurvey.com www.aquasurvey.com

PLANIT SAFE 3X3-5000 AR-AFFF SURROGATE TEST LIQUID ACUTE EFFECTS ON THE KILLIFISH, *FUNDULUS HETEROCLITUS*

METHOD USED

ASTM E 729 — 96

AUTHOR

York Terrell

STUDY COMPLETION DATE

April 25, 2016

PERFORMING LABORATORY

Aqua Survey, Inc. 469 Point Breeze Road Flemington, New Jersey 08822

SPONSOR

Vector Fire Technology Inc. 47 Sarahs Way Coatesville, PA 19320

LABORATORY PROJECT ID

STUDY # 36-037

TABLE OF CONTENTS

Section	<u>Title</u> <u>Pa</u>	age
I.	EXECUTIVE SUMMARY5	
II.	INTRODUCTION6	I
III.	TEST ADMINISTRATION 6A. Sponsors6B. Testing Facility6C. Dates of Experiment6D. Study Participants7	
IV.	TEST AND CONTROL SUBSTANCES	,
V.	MATERIALS AND METHODS7A. Test System7B. Source of Organisms7C. Source of Dilution Water8D. Acclimation Procedure8E. Diet8F. Characterization of Age and Size8G. Collection of Organisms for Testing8H. Apparatus and Test Conditions8I. Preparation of Test Solution9J. Test Procedures9K. LC ₅₀ Determinations10	
VI.	TEST RESULTS10	I
VII.	TEST VALIDITY10	I
VIII.	DISCUSSION10	I
IX.	CONCLUSIONS11	
Х.	REFERENCES12	
	SIGNATURE PAGE13	į

TABLE OF CONTENTS (continued)

LIST OF TABLES

<u>Tables</u>	<u>Title</u>	Page
1.	Water Quality Parameters	14
2.	% Mortality, LC50 Values	
3.	Clinical Observations	16

LIST OF APPENDICES

Appendices	<u>Title</u>	Page
А.	Water Characterization	17
В.	MSDS	
C.	Biological Effects and Water Qualities	41

PLANIT SAFE 3X3-5000 AR-AFFF SURROGATE TEST LIQUID ACUTE EFFECTS ON THE KILLIFISH, *FUNDULUS HETEROCLITUS*

I. EXECUTIVE SUMMARY

The acute toxicity of the test substance, PLANIT SAFE 3X3-5000 AR-AFFF Surrogate Test Liquid to the killifish, *Fundulus heteroclitus*, was determined in a 96-hour, flow-through, aquatic effect test.

This test is designed to test a 6% FFF material using the killifish test organism. For a 6% FFF material, it is desired to have the LC_{50} to be greater than 1,000 ppm. It turns out that we did not test a 6% concentration of the Planit Safe AFFF material, but a 100% concentration of this material. Our test concentrations were made at 4,000, 2,000, 1,000, 500 and 250 mg/L based on the assumption that the Planit Safe material as tested was a 6% concentration. Since the material as tested was actually 100% concentration of this material, the actual equivalent concentrations of a 6% concentration were 66,667, 33,333, 16,667, 8,333 and 4,167 mg/L.

A total of 20 killifish were exposed to each of five test substance concentrations. The test was performed in replicates of two (10 organisms per replicate). Exposure concentrations used throughout this report and in all endpoint calculations are the nominal concentrations of the total product. Replicate test results were pooled.

Killifish used for this test were actively feeding juveniles. The test had organisms with an average weight and length of 1.21 ± 0.18 g and 48 ± 2.1 mm, respectively. Water used as diluent was Manasquan seawater with a salinity of 15 \pm 2 ppt. The test temperature was 22 \pm 2 °C. The dissolved oxygen was maintained above 5.0 ppm via aeration.

The 96 hour LC₅₀ value for the PLANIT SAFE 3X3-5000 AR-AFFF Surrogate Test Liquid for the killifish, *Fundulus heteroclitus*, was determined to be >66,637 mg/L (6% solution), and the NOEC to be 66,667 mg/L (6% solution).

These study results indicate that an isolated or intermittent exposure to a concentration of PLANIT SAFE 3X3-5000 AR-AFFF Surrogate Test Liquid equal to or less than 66,667 mg/L (6% solution) is not likely to have an adverse effect on the killifish, *Fundulus heteroclitus*.

It should be noted that toxicity values might vary with different species, temperature and water qualities.

II. INTRODUCTION

Juvenile killifish were exposed to five concentrations of the test substance, PLANIT SAFE 3X3-5000 AR-AFFF Surrogate Test Liquid in a 96-hour, flow-through, aquatic effects test in order to permit a more accurate and complete assessment of its environmental impact. Test substance solutions were prepared through the addition of an appropriate aliquot of test substance stock solution to diluent water in the test vessels. Test solutions were delivered to test vessels via a proportional dilutor system. All exposure solutions were prepared in replicates of two. The killifish, *Fundulus heteroclitus*, was chosen for this test based on its ecological importance as a representative saltwater fish which can be reared within the laboratory. The objectives of the test were:

- 1) To determine if acute exposure to concentrations of the test substances would adversely affect the killifish; and,
- 2) If appropriate, provide an estimate of the 96-hour LC₅₀ value.

In this test, the killifish were observed for signs of stress, as well as mortality, when exposed to the test substance. For the purpose of calculating or estimating a 96-hour LC_{50} value, mortality would serve as the requisite endpoint. The study results may be used to determine the likelihood of an adverse effect if the test substance enters a saltwater environment.

III. TEST ADMINISTRATION

A. Sponsor

Vector Fire Technology Inc. 47 Sarahs Way Coatesville, PA 19320

B. Testing Facility

Aqua Survey, Inc. 469 Point Breeze Road Flemington, NJ 08822

C. Dates of Experiment

Date of Study Initiation:	3/2/16
Date of Chemical Exposure:	3/13/16 - 3/17/16
Date of Study Completion:	April 25, 2016

D. Study Participants

Cheryl Hall York Terrell Michelle Thomas Jon Doi, Ph.D. Quality Assurance Officer Study Director Laboratory Manager Executive Vice President

IV. TEST AND CONTROL SUBSTANCES

A. Test Substance

A 6% FFF test material solution is typically furnished for use in this test. In this case, a 100% solution was received and tested. The substance was received in a 1000 mL Nalgene bottle and identified as PLANIT SAFE 3X3-5000 AR-AFFF Surrogate Test Liquid. The test substance used for this test was supplied by the sponsor and received by this laboratory on March 2, 2016 and assigned ASI sample ID number 20160219. The MSDS (Material Safety Data Sheet) is provided in Appendix B.

B. Control Substance(s)

Negative Control:

Diluent Water

V. MATERIALS AND METHODS

A. Test System

The killifish, *Fundulus heteroclitus*, was used for this test. The following taxonomic characterization applies to *Fundulus heteroclitus*:

Phylum - Chordata Class - Osteichthyes Order - Cyprinodontiformes Family - Cyprinodontidae Genus - Fundulus Species – heteroclitus

B. Source of Organism

The killifish, *Fundulus heteroclitus*, used in this test were obtained from Aquatic Research Organisms, One Lafayette Road, Hampton, NH 03842. The organisms for the test were received by this laboratory on October 15, 2015 and assigned culture receiving log #35-021.

C. Source of Dilution Water

The water used for testing was Manasquan seawater adjusted to 15 ± 2 ppt using DI water. A complete summary of chemical characterization of reagent grade water used to prepare the dilution water is presented in Appendix A.

D. Acclimation Procedure

All killifish were held at test conditions prior to testing. The same supply of laboratory water was used as the source of test diluent water for the duration of the test.

E. Diet

Food used to maintain organisms for these tests was Trout Chow obtained from ABS, Fort Collins, CO and TetraMin flake food from Tetra Holding (US), Inc., Blacksburg, VA.

F. Characterization of Age and Size

Killifish used for this test were actively feeding juveniles. The test had organisms with an average weight and length of 1.21 ± 0.18 g and 48 ± 2.1 mm, respectively.

G. Collection of Organisms for Testing

Fish of relatively uniform size were collected and transferred, using a net, from the holding tanks to 1.0-liter polypropylene containers containing approximately 0.5 liters of diluent water. Sequential randomization was accomplished by allocating to each container no more than 20 percent of any one set of test organisms at a time. Fish were then transferred from the container to the test vessels by pouring the contents of the container (water and fish) through a net and rapidly transferring the fish from the net to the test vessel. Holding water was discarded.

H. Apparatus and Test Conditions

This acute aquatic effect test was performed in 9.0 L glass containers, each containing 3.0 L of exposure solution.

A modified Mount and Brungs proportional dilutor system was employed to deliver five test substance concentrations and a diluent water control to duplicate test vessels. A flow-splitting chamber was used between the dilutor cells and test vessel for each concentration to promote mixing of the test substance and diluent water.

The dilutor system was calibrated prior to test initiation and daily thereafter.

The light/dark cycle of the photoperiod was 16 hours on/8 hours off with two 30-minute transition periods. Test temperature was at 22 ± 2 °C.

I. Preparation of Test Solutions

A 4,000 mg/L stock solution of the 100% concentrate, which is the equivalent of 66,667 mg/L of a 6% solution, was prepared by adding an appropriate amount of test substance per liter in diluent water. The appropriate amount of the test material was put into the dilution container and stirred vigorously with a mechanical stirrer for at least 15 minutes. The 4000 mg/L stock solution of the test substance in diluent water apparently exceeded the solubility limit as undissolved particles were observed in the stock solution. Fresh stock solutions were prepared daily.

A modified Mount and Brungs proportional dilutor system was employed to deliver five test substance concentrations and a diluent water control to duplicate test vessels. Nominal test substance exposure concentrations of 4,167, 8,333, 16,667, 33,333 and 66,667 mg/L of 6% test material were delivered to test vessels by adding appropriate volumes of the stock solution (i.e., 63, 125, 250, 500, and 1,000 ml, respectively), in a total volume of 1 L (using diluent water where appropriate). It should be noted that all concentrations exceeded the apparent solubility limit in diluent water as undissolved particles were observed in all test vessels throughout the test. A flow-splitting chamber was used between the dilutor cells and test vessel for each concentration to promote mixing of the test substance and diluent water. A 0.5-L portion of test solution was delivered to each replicate test vessel at approximately 40-minute intervals.

The flow of test solution through each vessel was a minimum of five (5) replacement volumes every 24-hours.

J. Test Procedures

The procedures used in this test were based on accepted methodologies ¹⁻⁷. Observations for mortality and signs of stress were made during the test at 24, 48, 72 and 96 hours. Temperature, dissolved oxygen (D.O.), salinity and pH were measured at 0, 24, 48, 72 and 96 hours in each concentration. In addition, temperature was measured continuously (hourly) in one test vessel during the entire study.

Daily water quality measurements were made using a YSI Model 600 multiparameter probe and data logger. Continuous temperature measurements were made using a HOBO Water Temp Pro [H20-001].

The test was started when ten test organisms were placed into each of two replicate exposure vessels for each test substance concentration and control. All exposures were 96-hour flow through.

K. LC₅₀ Determinations

When appropriate, a computer program developed by Tidepool Scientific Software and Michael A. Ives is used to compute a point and interval (i.e. confidence interval) estimate of the LC₅₀. The program requires the following data: the concentration of the test substance; the number of organisms exposed; and the number of organisms that died.

VI. TEST RESULTS

Water quality parameters are summarized in Table 1. Mortality and LC_{50} value are summarized in Table 2. Clinical observations are summarized in Table 3. Raw data for biological effects and water quality parameters are provided in Appendix C.

VII. TEST VALIDITY

The following criteria for a valid test were evaluated during the study:

- A. Control organism survival was 100%. Control survival is recommended to be greater than 90% for an acceptable test.
- B. The dissolved oxygen level did not fall below 5.0 ppm.
- C. No abnormal occurrences (i.e., laboratory accidents) that might have influenced the outcome of the test were noted.

VIII. DISCUSSION

Nominal test concentrations of 4,167, 8,333, 16,667, 33,333 and 66,667 mg/L of a 6% solution of test material were used for this test.

The temperature remained at 22 ± 2 °C when measured in test vessels at 0, 24, 48, 72 and 96 hours. The extremes were 20.9 and 22.3 °C, while the extremes for

The temperature remained at 22 ± 2 °C when measured in test vessels at 0, 24, 48, 72 and 96 hours. The extremes were 20.9 and 22.3 °C, while the extremes for dissolved oxygen and pH measured at the same time intervals were 7.2 & 8.1 mg/L and 7.5 & 7.8 standard units, respectively. The salinity was maintained at 15 ± 2 ppt for the duration of the test. These values are considered to be acceptable for the organisms used in this test¹⁻⁷ and are not likely to have caused any adverse effects. It should also be noted that test vessels were aerated in order to maintain dissolved oxygen above 5.0 mg/L.

After 96 hours of exposure, no mortality was observed in all test concentrations. There was no mortality observed in the diluent water control.

The 96 hour LC₅₀ value for the killifish, *Fundulus heteroclitus*, was determined to be >66,667 mg/L of a 6% solution of test material, PLANIT SAFE 3X3-5000 AR-AFFF Surrogate Test Liquid. The NOEC value was determined to be 66,667 mg/l of a 6% solution of test material.

IX. CONCLUSIONS

These study results indicate that an isolated or intermittent exposure to a concentration of PLANIT SAFE 3X3-5000 AR-AFFF Surrogate Test Liquid equal to or less than 66,667 mg/L of a 6% solution of test material is not likely to have an adverse effect on the killifish, *Fundulus heteroclitus*.

This test is designed to test a 6% FFF material using the killifish test organism. For a 6% FFF material, it is desired to have the LC₅₀ to be greater than 1,000 ppm. It turns out that we did not test a 6% concentration of the Planit Safe AFFF material, but a 100% concentration of this material. Our test concentrations were made at 4,000, 2,000, 1,000, 500 and 250 mg/L based on the assumption that the Planit Safe material as tested was a 6% concentration. Since the material as tested was actually 100% concentration of this material, the actual concentrations of a 6% concentration was 66,667, 33,333, 16,667, 8,333 and 4,167 mg/L. As there was no toxicity at any of these test concentrations, we can say that a 6% concentration of Planit Safe AFFF material has an LC₅₀ greater than 66,667 mg/L, which is much higher than the desired LC₅₀ of greater than 1,000 ppm. It should be noted that toxicity values might vary with different species, temperature and water qualities.

X. REFERENCES

- 1. United States Environmental Protection Agency, (EPA). 1985. Toxic Substances, Testing Requirements; Final Rule and Proposed Rule. Federal Register, 40 CFR Part 797.1300 (Amended 1987).
- 2. U.S.E.P.A. 1982. Aquatic Organism Testing. "Acute Toxicity Test for Fish" (72-2) in Pesticide Assessment Guidelines Subdivision E Hazard Evaluation: Wildlife and Aquatic Organisms PB83-153908, pp. 66-69.
- 3. U.S.E.P.A. 2002. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. EPA/821-R-02-012.
- American Society for Testing and Materials (ASTM). <u>Annual Book of ASTM Standards</u>. 1986. Volume 11.04: Pesticides; Resource Recovery; Hazardous Substances and Oil Spill Responses; Waste Disposal; Biological Effects. Standard Practice for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates, and Amphibians, E729-96; American Society for Testing and Materials, Philadelphia, Pennsylvania.
- 5. American Public Health Association/American Water Works Association/Water Pollution Control Federation. 1989. <u>Standard Methods</u> <u>for the Examination of Water and Wastewater</u>, 17th Ed. American Public Health Association, Washington, D.C.
- 6. Fish Acute Toxicity Test, 1992. In OECD Guideline for Testing of Chemicals. No. 203. pp. 1 12.
- 7. Acute Toxicity for Fish. Methods for Determination of Ecotoxicity. 1984. In Official Journal of the European Communities, Vol. 27, pp. 146 - 154.
- 8. Tidepool Scientific Software, 1994-1996. ToxCALCTM Version 5.0.

SIGNATURE PAGE

PLANIT SAFE 3X3-5000 AR-AFFF SURROGATE TEST LIQUID ACUTE EFFECTS ON THE KILLIFISH, FUNDULUS HETEROCLITUS

york Tomell

York Terrell Study Director

<u>4/25/16</u> Date

TABLE 1

PLANIT SAFE 3X3-5000 AR-AFFF Surrogate test liquid Acute Effects on the Killifish, *Fundulus heteroclitus*

Demonstration	Time Interval		No	minal Con	centration (1	ng/L)	
Parameter	(hour)	DWC	4,167	8,333	16,667	33,333	66,667
	0	8.0	8.0	8.0	8.0	8.1	7.8
Dissolved	24	7.2	7.4	7.5	7.6	7.5	7.4
Oxygen (mg/L)	48	7.4	7.4	7.5	7.5	7.5	7.4
	72	7.5	7.6	7.7	7.7	7.7	7.6
	96	7.4	7.5	7.7	7.7	7.7	7.7
	0	7.8	7.8	7.7	7.8	7.8	7.7
PH	24	7.7	7.7	7.7	7.7	7.7	7.6
(Standard	48	7.6	7.7	7.7	7.7	7.7	7.7
Units)	72	7.5	7.6	7.7	7.7	7.7	7.7
	96	7.5	7.6	7.7	7.7	7.7	7.7
	0	21.0	20.9	21.0	21.0	21.0	21.0
Tomponoturo	24	21.3	21.4	21.4	21.4	21.5	21.5
Temperature (°C)	48	21.4	21.4	21.4	21.4	21.5	21.6
(C)	72	21.8	21.9	21.9	21.9	21.9	22.0
	96	22.2	22.2	22.2	22.2	22.3	22.3
	0	15.2	15.3	15.2	15.2	15.2	15.2
Salinity	24	15.5	15.5	15.5	15.5	15.4	15.4
•	48	15.2	15.3	15.3	15.3	15.4	15.5
(ppt)	72	15.3	15.2	15.2	15.2	15.2	15.3
	96	15.4	15.4	15.4	15.4	15.4	15.4

WATER QUALITY PARAMETERS

DWC = Diluent Water Control

TABLE 2

PLANIT SAFE 3X3-5000 AR-AFFF Surrogate test liquid Acute Effects on the Killifish, *Fundulus heteroclitus*

PERCENT MORTALITIES AND LC50 VALUES

Time Intervals		No	ominal Con	centration (m	g/L)	
(hours)	DWC	4,167	8,333	16,667	33,333	66,667
24	0%	0%	0%	0%	0%	0%
	(0/20)	(0/20)	(0/20)	(0/20)	(0/20)	(0/20)
48	0%	0%	0%	0%	0%	0%
	(0/20)	(0/20)	(0/20)	(0/20)	(0/20)	(0/20)
72	0%	0%	0%	0%	0%	0%
	(0/20)	(0/20)	(0/20)	(0/20)	(0/20)	(0/20)
96	0%	0%	0%	0%	0%	0%
	(0/20)	(0/20)	(0/20)	(0/20)	(0/20)	(0/20)

PERCENT MORTALITY

DWC = Dilution Water Control

LC₅₀ VALUES (mg/L)

I C 50 mg	LC ₅₀ mg/L		48 hours +	72 hours +	96 hours +
LC30 mg	L	>66,667	>66,667	>66,667	>66,667
95%	LOW		N/A	N/A	N/A
Confidence Limits	High	N/A	N/A	N/A	N/A

+ = Determined by visual inspection of data

TABLE 3

PLANIT SAFE 3X3-5000 AR-AFFF Surrogate test liquid Acute Effects on the Killifish, Fundulus heteroclitus

Observations Interval			Nominal Cor	ncentration (mg/L)	
(hours)	DWC	4,167	8,333	16,667	33,333	66,667
24	Ν	Ν	Ν	Ν	Ν	N
	Ν	Ν	Ν	Ν	Ν	Ν
48	Ν	Ν	Ν	Ν	Ν	Ν
48	Ν	Ν	Ν	Ν	Ν	Ν
70	Ν	Ν	Ν	Ν	Ν	Ν
72	Ν	Ν	Ν	Ν	Ν	Ν
06	Ν	Ν	Ν	Ν	Ν	Ν
96	Ν	Ν	Ν	Ν	Ν	Ν

CLINICAL OBSERVATIONS

DWC = Diluent Water Control

N = Normal

Beh	avio	or	Swin	nming		Integ	gume	ent	Pign	nen	tation	Resp	oira	tion
QU	=	Quiescent	SE	=	Erratic	MS	=	Mucus Shedding	LD	=	Light Discolored	RS	=	Slow
ΗY	=	Hyper excitable	GY	=	Gyrating	MC	=	Mucus	DD	=	Dark Discolored	RR	=	Rapid
SF	=	Surfacing	SI	=	Inverted			Coagulation				RI	=	Irregular
SD	=	Sounding	SS	=	On Side	HM	=	Hemorrhagic				RL	=	Labor
SP	=	Spasmodic	SC	=	Ceased							GA	=	Gulping A

Air

APPENDIX A

PLANIT SAFE 3X3-5000 AR-AFFF SURROGATE TEST LIQUID AFFF ACUTE EFFECTS ON THE KILLIFISH, *FUNDULUS HETEROCLITUS*

WATER CHARACTERIZATION

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Aqua Survey, Inc. 469 Point Breeze Road Flemington NJ 08822

June 03, 2015

Project: In House Water Analysis

Submittal Date: 05/12/2015 Group Number: 1560489 PO Number: RMF121713 State of Sample Origin: NJ

<u>Client Sample Description</u> 2015 0426 (DI H2O) Grab Water Sample 2015 0427 (Manasquan H2O) Grab Salt Water Sample

Lancaster Labs (LL) # 7884089 7884090

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>.

ELECTRONICAqua Survey, Inc.COPY TO11 COPY TOAqua Survey, Inc.

Attn: Joanna Hunt

Attn: Jon Doi

Respectfully Submitted,

Barbara Weyardt

Barbara A. Weyandt Specialist

(717) 556-7264

🔅 eurofins

Lancaster Laboratories Environmental

Project Name: In House Water Analysis LL Group #: 1560489

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below. Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

EPA 608, Pesticides/PCBs

<u>Sample #s: 7884090</u>

The recovery for the sample surrogate(s) is outside the QC acceptance limits as noted on the QC Summary. The following corrective action was taken: The sample was re-extracted outside the method required holding time and the QC is compliant. All results are reported from the first trial. Similar results were obtained in both trials with the exception that endosulfan I was detected in the reextract at a concentration of .047 ug/1.

<u>Sample #s: 7884089</u>

The recovery for the sample surrogate(s) is outside the QC acceptance limits as noted on the QC Summary. The following corrective action was taken: The sample was re-extracted outside the method required holding time and the QC is compliant. All results are reported from the first trial. Similar results were obtained in both trials.

Batch #: 151380003A (Sample number(s): 7884089-7884090)

The relative percent difference(s) for the following analyte(s) in the LCS/LCSD were outside acceptance windows: Alpha BHC

The recovery(ies) for one or more surrogates were outside of the QC window for sample(s) 7884089, 7884090, LCSD Batch #: 151380004A (Sample number(s): 7884089)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD exceeded the acceptance window indicating a positive bias: PCB-1016, PCB-1260

The recovery(ies) for one or more surrogates were outside of the QC window for sample(s) LCS, LCSD

EPA 218.6, Wet Chemistry

<u>Sample #s: 7884089, 7884090</u>

The holding time was not met. The client was notified and the data reported.

SM 5310 C-2000, Wet Chemistry

Batch #: 15135049501B (Sample number(s): 7884089 UNSPK: P882154 BKG: P882154)

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Total Organic Carbon

Analysis Report

Account

Aqua Survey, Inc. 469 Point Breeze Road

Flemington NJ 08822

LL Sample # WW 7884089 LL Group # 1560489

06988

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: 2015 0426 (DI H2O) Grab Water Sample Annual Saltwater/DI water analysis

Project Name: In House Water Analysis

Collected: 05/12/2015 09:00

Submitted: 05/12/2015 15:15 Reported: 06/03/2015 06:57

426DI

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilutior Factor
Pesti	cides/PCBs	EPA 608		ug/l	ug/l	ug/l	
07572	Aldrin		309-00-2	< 0.0017	0.0017	0.0086	1
07572	Alpha BHC		319-84-6	< 0.0028	0.0028	0.0086	1
)7572	-		319-85-7	< 0.0042	0.0042	0.0086	1
7572	Gamma BHC - Lindane	5	58-89-9	< 0.0022	0.0022	0.0086	1
7572	Alpha Chlordane		5103-71-9	< 0.0022	0.0022	0.0086	1
7572	Chlordane		57-74-9	< 0.069	0.069	0.43	1
7572	Gamma Chlordane		5103-74-2	< 0.0036	0.0036	0.0086	1
7572	o,p-DDD		53-19-0	< 0.0043	0.0043	0.017	1
7572	p,p-DDD		72-54-8	< 0.0046	0.0046	0.017	1
7572	o,p-DDE		3424-82-6	< 0.0060	0.0060	0.017	1
7572	p,p-DDE		72-55-9	< 0.0043	0.0043	0.017	1
7572	o,p-DDT		789-02-6	< 0.0044	0.0044	0.017	1
7572	p,p-DDT		50-29-3	< 0.0045	0.0045	0.017	1
7572	Delta BHC		319-86-8	< 0.0033	0.0033	0.0086	1
7572	Dieldrin		60-57-1	< 0.0044	0.0044	0.017	1
7572	Endosulfan I		959-98-8	< 0.0044	0.0044	0.0086	1
7572	Endosulfan II		33213-65-9	< 0.0095	0.0095	0.017	1
7572	Endosulfan Sulfate		1031-07-8	< 0.0043	0.0043	0.017	1
7572			72-20-8	< 0.0060	0.0060	0.017	1
7572			7421-93-4	< 0.017	0.017	0.086	1
7572	Endrin Ketone		53494-70-5	< 0.0043	0.0043	0.017	1
7572	HCB		118-74-1	< 0.0026	0.0026	0.0086	1
7572	Heptachlor		76-44-8	< 0.0022	0.0022	0.0086	1
7572	Heptachlor Epoxide		1024-57-3	< 0.0022	0.0022	0.0086	1
7572			72-43-5	< 0.043	0.043	0.086	1
7572	Mirex		2385-85-5	< 0.0086	0.0086	0.043	1
6030	PCB-1016		12674-11-2	< 0.086	0.086	0.43	1
6030	PCB-1221		11104-28-2	< 0.086	0.086	0.43	1
6030	PCB-1232		11141-16-5	< 0.086	0.086	0.43	1
6030	PCB-1242		53469-21-9	< 0.086	0.086	0.43	1
6030	PCB-1248		12672-29-6	< 0.086	0.086	0.43	1
6030	PCB-1254		11097-69-1	< 0.086	0.086	0.43	1
6030	PCB-1260		11096-82-5	< 0.13	0.13	0.43	1
6030	Total PCBs		1336-36-3	< 0.086	0.086	0.43	1
7572	Telodrin		297-78-9	< 0.0017	0.0017	0.0086	1
7572	Toxaphene		8001-35-2	< 0.26	0.26	0.86	1
acce corr The time	recovery for the sam ptance limits as not ective action was ta sample was re-extrac and the QC is compl t trial. Similar re	ed on the QC ken: ted outside iant. All re	Summary. The the method requesults are repo	following nired holding prted from the			
etal		EPA 200.8		mg/l	mg/l	mg/l	

Metal	s	EPA 200.8 rev 5.4	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	< 0.00082	0.00082	0.0020	1
06028	Cadmium	7440-43-9	< 0.00017	0.00017	0.00050	1
06033	Copper	7440-50-8	< 0.00050	0.00050	0.0020	1
06035	Lead	7439-92-1	< 0.000082	0.000082	0.0010	1
06039	Nickel	7440-02-0	< 0.00079	0.00079	0.0020	1
06042	Silver	7440-22-4	< 0.00013	0.00013	0.00050	1

*=This limit was used in the evaluation of the final result

Analysis Report

Account

Aqua Survey, Inc. 469 Point Breeze Road

Flemington NJ 08822

LL Sample # WW 7884089

06988

LL Group # 1560489

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: 2015 0426 (DI H2O) Grab Water Sample Annual Saltwater/DI water analysis

Project Name: In House Water Analysis

Collected: 05/12/2015 09:00

Submitted: 05/12/2015 15:15 Reported: 06/03/2015 06:57

426DI

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metal	S	EPA 245.1	rev 3	mg/l	mg/l	mg/l	
00259	Mercury		7439-97-6	< 0.000050	0.000050	0.00020	1
Wet C	hemistry	EPA 218.6		ug/l	ug/l	ug/l	
12868	Hexavalent Chromium		18540-29-9	< 0.015	0.015	0.050	1
	The holding time wa data reported.	s not met. I	he client was	notified and the			
		EPA 300.0		mg/l	mg/l	mg/l	
01504	Fluoride		16984-48-8	< 0.050	0.050	0.10	1
		SM 5310 C	-2000	mg/l	mg/l	mg/l	
00273	Total Organic Carbo	n	n.a.	< 0.50	0.50	1.0	1
		SM 2540 B	-1997	mg/l	mg/l	mg/l	
00203	Total Solids		n.a.	< 12.0	12.0	40.0	1
		SM 4500-C	L F-2000	mg/l	mg/l	mg/l	
00240	Chlorine Residual (DPD)	n.a.	< 0.040	0.040	0.10	1
	The 40 CFR Part 136 (within 15 minutes) the result may not 1	upon sample	collection. B	ecause this was no			
		SM 4500-H	+ B-2000	Std. Units	Std. Units	Std. Units	
12152	рН		n.a.	6.0	0.010	0.010	1
	The 40 CFR Part 136 (within 15 minutes) the result may not 1	upon sample	collection. B	ecause this was no			
Microl	biology	SM 9215 B	-1994	cfu/ml	cfu/ml	cfu/ml	
00307	Heterotrophic Plate	Count	n.a.	87	1	1	n.a.

General Sample Comments

State of New Jersey Lab Certification No. PA011

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

			Laboratory Sa	mple Analys	sis Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06030	PCBs in Water by 608	EPA 608	1	151380004A	05/19/2015 09:35	Monica M Souders	1
07572	Pesticides in Water by 608	EPA 608	1	151380003A	05/19/2015 22:50	Lisa A Reinert	1
11960	Method 608 PCB Water Ext.	EPA 608	1	151380004A	05/18/2015 15:00	Seth A Farrier	1

*=This limit was used in the evaluation of the final result

Analysis Report

Account

LL Sample # WW 7884089

06988

LL Group # 1560489

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: 2015 0426 (DI H2O) Grab Water Sample Annual Saltwater/DI water analysis

Project Name: In House Water Analysis

Collected: 05/12/2015 09:00

Submitted: 05/12/2015 15:15 Reported: 06/03/2015 06:57

426DI

Laboratory Sample Analysis Record

Aqua Survey, Inc. 469 Point Breeze Road

Flemington NJ 08822

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10241	Method 608 Water Extraction	EPA 608	1	151380003A	05/18/2015	15:00	Seth A Farrier	1
06025	Arsenic	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:40	Choon Y Tian	1
06028	Cadmium	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:40	Choon Y Tian	1
06033	Copper	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:40	Choon Y Tian	1
06035	Lead	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:40	Choon Y Tian	1
06039	Nickel	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:40	Choon Y Tian	1
06042	Silver	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:40	Choon Y Tian	1
00259	Mercury	EPA 245.1 rev 3	1	151345714003	05/18/2015	08:27	Damary Valentin	1
07050	ICP/MS EPA-600 Digest	EPA 200.8 rev 5.4	1	151347050004	05/15/2015	08:30	Christopher M Klumpp	1
05714	PW/WW Hg Digest	EPA 245.1 rev 3	1	151345714003	05/15/2015	09:50	Christopher M Klumpp	1
12868	Hexavalent Chromium	EPA 218.6	1	15139987141A	05/19/2015	14:10	Clinton M Wilson	1
01504	Fluoride	EPA 300.0	1	15135667151A	05/15/2015	21:46	Drew M Gerhart	1
00273	Total Organic Carbon	SM 5310 C-2000	1	15135049501B	05/15/2015	12:20	James S Mathiot	1
00203	Total Solids	SM 2540 B-1997	1	15133020301A	05/13/2015	12:27	Susan A Engle	1
00240	Chlorine Residual (DPD)	SM 4500-CL F-2000	1	15134024001A	05/14/2015	19:00	Daniel S Smith	1
12152	рH	SM 4500-H+ B-2000	1	15133002201A	05/13/2015	13:38	Michele L Graham	1
00307	Heterotrophic Plate Count	SM 9215 B-1994	1	051215HLCB	05/15/2015	11:36	Hannah L Cottman	n.a.

Analysis Report

Aqua Survey, Inc. 469 Point Breeze Road

Flemington NJ 08822

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: 2015 0427 (Manasquan H2O) Grab Salt Water Sample Annual Saltwater/DI water analysis

LL Sample # WW 7884090 LL Group # 1560489 Account # 06988

Project Name: In House Water Analysis

Collected: 05/12/2015 10:25

Submitted: 05/12/2015 15:15 Reported: 06/03/2015 06:57

427MS

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Pesti	cides/PCBs EPA 60	8	ug/l	ug/l	ug/l	
07572	Aldrin	309-00-2	< 0.0017	0.0017	0.0085	1
07572	Alpha BHC	319-84-6	< 0.0027	0.0027	0.0085	1
07572	Beta BHC	319-85-7	< 0.0042	0.0042	0.0085	1
07572	Gamma BHC - Lindane	58-89-9	< 0.0021	0.0021	0.0085	1
07572	Alpha Chlordane	5103-71-9	< 0.0021	0.0021	0.0085	1
07572	Chlordane	57-74-9	< 0.068	0.068	0.42	1
07572	Gamma Chlordane	5103-74-2	< 0.0036	0.0036	0.0085	1
07572	o,p-DDD	53-19-0	< 0.0042	0.0042	0.017	1
07572	p,p-DDD	72-54-8	< 0.0045	0.0045	0.017	1
07572	o,p-DDE	3424-82-6	< 0.0059	0.0059	0.017	1
07572	p,p-DDE	72-55-9	< 0.0042	0.0042	0.017	1
07572	o,p-DDT	789-02-6	< 0.0043	0.0043	0.017	1
07572	p,p-DDT	50-29-3	< 0.0044	0.0044	0.017	1
07572	Delta BHC	319-86-8	< 0.0032	0.0032	0.0085	1
07572	Dieldrin	60-57-1	< 0.0043	0.0043	0.017	1
07572	Endosulfan I	959-98-8	< 0.0043	0.0043	0.0085	1
07572	Endosulfan II	33213-65-9	< 0.0093	0.0093	0.017	1
07572	Endosulfan Sulfate	1031-07-8	< 0.0042	0.0042	0.017	1
07572	Endrin	72-20-8	< 0.0059	0.0059	0.017	1
07572	Endrin Aldehyde	7421-93-4	< 0.017	0.017	0.085	1
07572	Endrin Ketone	53494-70-5	< 0.0042	0.0042	0.017	1
07572	HCB	118-74-1	< 0.0025	0.0025	0.0085	1
07572	Heptachlor	76-44-8	< 0.0022	0.0022	0.0085	1
07572	Heptachlor Epoxide	1024-57-3	< 0.0022	0.0022	0.0085	1
07572	Methoxychlor	72-43-5	< 0.042	0.042	0.085	1
07572	Mirex	2385-85-5	< 0.0085	0.0085	0.042	1
07572	Telodrin	297-78-9	< 0.0017	0.0017	0.0085	1
07572	Toxaphene	8001-35-2	< 0.25	0.25	0.85	1
acce corr The time firs	recovery for the sample surro ptance limits as noted on the ective action was taken: sample was re-extracted outsi and the QC is compliant. Al t trial. Similar results wer endosulfan I was detected in	QC Summary. The s de the method requ: l results are report e obtained in both	Eollowing ired holding rted from the trials with the ex			
Metal	s EPA 20	0.8 rev 5.4	mg/l	mg/l	mg/l	
06028	Cadmium	7440-43-9	0.00024 J	0.00017	0.00050	1
06033	Copper	7440-50-8	0.0013 J	0.00050	0.0020	1
06035	Lead	7439-92-1	0.00037 J	0.000082	0.0010	1
06039	Nickel	7440-02-0	0.0017 J	0.00079	0.0020	1
06042	Silver	7440-22-4	< 0.00013	0.00013	0.00050	1
06049	Zinc	7440-66-6	0.0068 J	0.0024	0.0150	1
	EPA 24	5.1 rev 3	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	< 0.000050	0.000050	0.00020	1
00239	noroary	12010	\$ 0.000050	0.000000	0.00020	-
Wet C	hemistry EPA 21	8.6	ug/l	ug/l	ug/l	
06467	Hexavalent Chromium	18540-29-9	< 5.0	5.0	10.0	1

*=This limit was used in the evaluation of the final result

Analysis Report

Account

LL Sample # WW 7884090

06988

LL Group # 1560489

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: 2015 0427 (Manasquan H2O) Grab Salt Water Sample Annual Saltwater/DI water analysis

Project Name: In House Water Analysis

Collected: 05/12/2015 10:25

Submitted: 05/12/2015 15:15 Reported: 06/03/2015 06:57

427MS

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Wet C	hemistry EI	PA 218.6		ug/l	ug/l	ug/l	
	The holding time was n data reported.	ot met. I	he client was r	notified and the			
12868	Hexavalent Chromium		18540-29-9	< 0.015	0.015	0.050	1
	The holding time was n data reported.	ot met. I	The client was r	notified and the			

Aqua Survey, Inc. 469 Point Breeze Road

Flemington NJ 08822

General Sample Comments

State of New Jersey Lab Certification No. PA011

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
07572	Pesticides in Water by 608	EPA 608	1	151380003A	05/19/2015	23:03	Lisa A Reinert	1
10241	Method 608 Water Extraction	EPA 608	1	151380003A	05/18/2015	15:00	Seth A Farrier	1
06028	Cadmium	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:42	Choon Y Tian	1
06033	Copper	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:42	Choon Y Tian	1
06035	Lead	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:42	Choon Y Tian	1
06039	Nickel	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:42	Choon Y Tian	1
06042	Silver	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:42	Choon Y Tian	1
06049	Zinc	EPA 200.8 rev 5.4	1	151347050004A	05/19/2015	14:42	Choon Y Tian	1
00259	Mercury	EPA 245.1 rev 3	1	151345714003	05/18/2015	08:37	Damary Valentin	1
07050	ICP/MS EPA-600 Digest	EPA 200.8 rev 5.4	1	151347050004	05/15/2015	08:30	Christopher M Klumpp	1
05714	PW/WW Hg Digest	EPA 245.1 rev 3	1	151345714003	05/15/2015	09:50	Christopher M Klumpp	1
06467	Hexavalent Chromium	EPA 218.6	2	15140987301A	05/20/2015	15:10	Clinton M Wilson	1
12868	Hexavalent Chromium	EPA 218.6	1	15139987141A	05/19/2015	14:30	Clinton M Wilson	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Aqua Survey, Inc. Reported: 06/03/2015 06:57 Group Number: 1560489

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOQ</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	RPD <u>Max</u>
Batch number: 151380003A	Sample numi	ber(s): 78	84089-788	4090					
Aldrin	< 0.0016	0.0016	0.0080	uq/l	74	59	42-122	23	30
Alpha BHC	< 0.0026	0.0026	0.0080	uq/l	96	63	55-134	41*	30
Beta BHC	< 0.0039	0.0039	0.0080	ug/l	91	80	57-141	12	30
Gamma BHC - Lindane	< 0.0020	0.0020	0.0080	ug/l	92	74	58-127	22	30
Alpha Chlordane	< 0.0020	0.0020	0.0080	ug/l	91	86	54-135	6	30
Chlordane	< 0.064	0.064	0.40	ug/l				-	
Gamma Chlordane	< 0.0034	0.0034	0.0080	uq/l	93	88	53-138	6	30
o,p-DDD	< 0.0040	0.0040	0.016	ug/l					
p,p-DDD	< 0.0042	0.0042	0.016	ug/l	89	87	52-141	3	30
o,p-DDE	< 0.0056	0.0056	0.016	ug/l	0.5	0,	00 111	0	50
p,p-DDE	< 0.0040	0.0040	0.016	ug/l	88	84	49-144	5	30
o,p-DDT	< 0.0041	0.0041	0.016	ug/1	00	01	19 111	5	50
p,p-DDT	< 0.0042	0.0042	0.016	ug/1	66	65	51-142	1	30
Delta BHC	< 0.0030	0.0030	0.0080	ug/l	94	87	55-141	8	30
Dieldrin	< 0.0030	0.0041	0.016	ug/1 ug/1	90	85	58-133	6	30
Endosulfan I	< 0.0041	0.0041	0.0080	ug/1 ug/1	83	78	50-126	6	30
Endosulfan II	< 0.0041	0.0088	0.016	ug/1 ug/1	88	85	55-132	3	30
Endosulfan Sulfate	< 0.0040	0.0040	0.016	ug/1 ug/1	88	87	54-139	1	30
Endrin	< 0.0040	0.0056	0.016	ug/l	65	79	35-143	20	30
Endrin Aldehyde	< 0.0050	0.0050	0.010	ug/1 ug/1	91	81	50-131	12	30
Endrin Ketone	< 0.018	0.0040	0.016	ug/1 ug/1	90	80	50-143	12	30
HCB	< 0.0040	0.0040	0.0080	ug/l	90	80	50-145	12	30
Heptachlor	< 0.0024	0.0024	0.0080	ug/1 ug/1	80	63	38-111	25	30
Heptachlor Epoxide	< 0.0021	0.0021	0.0080	ug/1 ug/1	91	84	56-140	8	30
Methoxychlor	< 0.040	0.040	0.080	ug/1 ug/1	68	68	49-148	8 1	20
Mirex	< 0.0040	0.0040	0.040	ug/1 ug/1	00	00	49-140	T	20
Telodrin	< 0.0080	0.0016	0.040	ug/1 ug/1					
Toxaphene	< 0.24	0.24	0.80	ug/1 ug/1					
Toxaphene	< 0.24	0.24	0.80	ug/1					
Batch number: 151380004A	Sample num	ber(s): 78							
PCB-1016	< 0.080	0.080	0.40	ug/l	123*	98	60-117	22	30
PCB-1221	< 0.080	0.080	0.40	ug/l					
PCB-1232	< 0.080	0.080	0.40	ug/l					
PCB-1242	< 0.080	0.080	0.40	ug/l					
PCB-1248	< 0.080	0.080	0.40	ug/l					
PCB-1254	< 0.080	0.080	0.40	ug/l					
PCB-1260	< 0.12	0.12	0.40	ug/l	128*	101	64-127	23	30
Total PCBs	< 0.080	0.080	0.40	ug/l					
Batch number: 151345714003	Sample num	ber(s): 78	84089-788	4090					
Mercury	<	0.00005	0.00020	mg/l	107		85-115		
	0.000050	0	0.00020		±0,		55 <u>11</u> 5		

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

Group Number: 1560489

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Aqua Survey, Inc. Reported: 06/03/2015 06:57

Blank Blank Blank Report LCS LCSD LCS/LCSD RPD Analysis Name Result MDL** <u>L00</u> <u>Units</u> %REC %REC <u>Limits</u> RPD Max Batch number: 151347050004A Sample number(s): 7884089-7884090 Arsenic < 0.00082 0.00082 0.0020 102 85-115 mg/l Cadmium < 0.00017 0.00017 0.00050 mg/l 99 85-115 mg/l Copper < 0.00050 0.00050 0.0020 96 85-115 85-115 Lead 0.00008 0.0010 mg/l 101 0.000082 2 Nickel < 0.00079 0.00079 0.0020 mg/l 101 85-115 Silver 0.00013 < 0.00013 0.00050 mg/l 101 85-115 85-115 Zinc < 0.0024 0.0024 0.0150 mg/l 103 Batch number: 15135049501B Sample number(s): 7884089 Total Organic Carbon < 0.50 0.50 mg/l 102 91-113 1.0 Batch number: 15135667151A Sample number(s): 7884089 0.050 99 90-110 Fluoride < 0.050 mg/l 0.10 Batch number: 15139987141A Sample number(s): 7884089-7884090 20 Hexavalent Chromium < 0.0150.015 0.050 ug/l 102 101 90-110 1 Batch number: 15140987301A Sample number(s): 7884090 Hexavalent Chromium ug/l 102 90-110 < 5.0 5.0 10.0 Batch number: 15133002201A Sample number(s): 7884089 95 - 105рΗ 99 Batch number: 15133020301A Sample number(s): 7884089 Total Solids < 12.0 12.0 40.0 mg/l 97 90 - 114Batch number: 15134024001A Sample number(s): 7884089 Chlorine Residual (DPD) < 0.040 0.040 0.10 mg/l 99 99 95-105 0 3

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u>	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 151345714003 Mercury	Sample 107	number(s)	: 7884089 80-120	-788409	0 UNSP	K: 7884089 E < 0.000050	8KG: 7884089 < 0.000050		20
Batch number: 151347050004A	Sample	number(s)	: 7884089	-788409	0 UNSP	K: P886265 E	KG: P886265		
Arsenic	101		70-130			< 0.00082	< 0.00082	0 (1)	20
Cadmium	102		70-130			0.00061	0.00064	4 (1)	20
Copper	98		70-130			0.0023	0.0024	3 (1)	20
Lead	101		70-130			< 0.000082	< 0.000082	0 (1)	20
Nickel	103		70-130			0.0125	0.0131	5	20
Silver	101		70-130			< 0.00013	< 0.00013	0 (1)	20
Zinc	103		70-130			0.0577	0.0575	0 (1)	20
Batch number: 15135049501B	Sample	number(s)	: 7884089	UNSPK:	P8821	54 BKG: P882	154		
Total Organic Carbon	106		63-142			1.2	1.4	12* (1)	4

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Aqua Survey, Inc. Reported: 06/03/2015 06:57 Group Number: 1560489

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u> Batch number: 15135667151A	<u>%REC %REC L</u> Sample number(s):	<u>Limits</u> <u>RPD</u> 7884089 UNSPK:			DUP <u>RPD</u>	Dup RPD <u>Max</u>
Fluoride		90-110	< 0.25	< 0.25	0 (1)	20
Batch number: 15139987141A Hexavalent Chromium	Sample number(s): 101	7884089-7884090 90-110	0 UNSPK: 7884089 E < 0.015	< 0.015	, 0 (1)	20
Batch number: 15140987301A Hexavalent Chromium	Sample number(s): 104 104 9		P895167 BKG: P895 2 < 5.0	5167 < 5.0	0 (1)	20
Batch number: 15133002201A pH	Sample number(s):	7884089 BKG: P	2882919 7.4	7.5	1	3
Batch number: 15133020301A Total Solids	Sample number(s): 91	7884089 UNSPK: 90-114	P878971 BKG: P878 2,540	3971 2,580	1	5
Batch number: 15134024001A Chlorine Residual (DPD)	Sample number(s):	7884089 BKG: P	2886461 1.1	1.1	2	4

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: Pesticides in Water by 608 Batch number: 151380003A

	Tetrachloro-m-xylene	Decachlorobiphenyl
7884089	13*	66
7884090	20*	76
Blank	87	51
LCS	83	47
LCSD	30*	33
Limits:	39-138	32-149
	Name: PCBs in Wa	iter by 608
Batch nu		
	mber: 151380004A	
	mber: 151380004A Tetrachloro-m-xylene	Decachlorobiphenyl
7884089		Decachlorobiphenyl 69
	Tetrachloro-m-xylene	
7884089	Tetrachloro-m-xylene 95	69
7884089 Blank	Tetrachloro-m-xylene 95 91	69 50
7884089 Blank LCS	Tetrachloro-m-xylene 95 91 112	69 50 26*

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

ຍ້ຄັນ	01	rofine	1
0.0 0	CU	roins	

Lancaster Laboratories

Acct. # <u>6988</u> For Eurofins Lancaster Laboratories Environmental use only Group # <u>156008</u> Sample # <u>584089-90</u> Instructions on reverse side correspond with circled numbers.

Environmental						-								_		
Client Information Client: Acct. #:		4	Matrix	Τ		5		Ana	ysis	Reque	sted			For Lab Use	Only	
Client: Acct. #:		T		Π				Pre	serva	ion Co	des	Т	1	FSC:	175	
AQUA SURVEY IW (PWSID #:		-												SCR#:	<u>. 90</u> .	
IN-HOUSE Wate Analys (Ground Surface								-			Preserv H=HCI		oues iosulfate
Project Manager: P.O. #:		- je	Gro											N=HNO ₃	B=Na	
RFristrom		Sediment			ers			-	0					S=H ₂ SO ₄	O =Ot	
Sampler: Quote #:		- S			Containers	🗡	- P	an	R	as				6 Re	emarks	
R. Fristion			Potable NPDES		ont		10	14	- 1	ene	·	+				
Name of state where samples were collected:	3 <u>9</u>		PD ota		ŭ		10	-71	/	va,	T	Ί,				
New Jersey	Grab (-		1		# of		* 0	onto	:1	Ball	, we	yan	1	-		
2 / Collected	a å		ter	Other:	al‡	ĺĺ			ľ					1		
Date Time	Grab Comg	Soil	Water	5	Total									X Cal	nl	-
2015 0426 LDIH20) 5/14/15 0900		1		understanding of the second	$\frac{1}{9}$									apalv	1.1	C
20150427 (Manasquan Hav) Shulis 1075		1			4				-					last	the a	$\int d$
OCIS OT # F CITAMUS Spice and ASU IS ILLIS NOTS		┼──			7					+ + - + - + - + - + - + - + - + - + -	_			1031	yen.	- Eff
											_					
		╉───							-			-				
					-	$ \rightarrow $										
		+-														
	 	-									_					
	Delinguishe	d by						Tim		Dessived			<u>الم</u> لا	l IDa		Time (a)
7) Turnaround Time (TAT) Requested (please circle)	Relinquishe		S. Month	1	· n		Date 5/8/12	Time	10	Received	1/	<i>I</i> 9	t	Da	-///	Time (9)
(Rush TAT is subject to laboratory approval and surcharge.)	Relingerishe	d by	S. Mang	<u>M</u>	T)/ // 4~ Sate /			Received		12		Ja Da	/12/15 te	<u> (ア) ()</u> Time
	P.P.	, I	1£		0		5/12/1		45			sh	110	C k	· 17. 15	10.45
Date results are needed:	Relinquishe	d by		1			Date	Time		Received		1.0	-	 Da	te	Time
	HI.	$\mathcal{N}^{!}$	Hhill	710-	1	\$	121	15 1	515							
E-mail address:	Relinquishe	d by		l	C	· [Date	Time		Received	by			Da	te	Time
8) Data Package Options (circle if required)			<u>\</u>													
Type I (EPA Level 3 Type VI (Raw Data Only)	Relinquishe	a by		and the second second			Date	Time	•	Received	by L	(n		Da		Time
Equivalent/non-CLP)							NI					h O		and the second	12/15	1515
Type III (Reduced non-CLP) TX TRRP-13		lf ver	EDD Reques, format:	uired?	ΥÌ	res	No			Rélinqu UPS		by Co Fedi		cial Carrier: Other		
	Si	<u>,</u>	ecific QC (N	AS/MS)un)?	Yes	 No				-			-	
NYSDEC Category A or B MA MCP CT RCP	1	•	ate QC sample			• •			.)		Tempe	rature	upon	n receipt <u>().</u>	1	°C

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client. Page 12 of 14

🔅 eurofins

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Client: Aqua Survey

Doc Log ID: 69062 Group Number(s): 15-60489

	Delivery and	Receipt Information		
Delivery Method:	ELLE Courier	Arrival Timestamp:	05/12/2015 1	<u>5:15</u>
Number of Packages:	L	Number of Projects:	<u>1</u>	
State/Province of Origin:	<u>11</u>			
·	Arrival Co	ndition Summary		
Shipping Container Sealed:	No	Sample IDs on COC n	natch Containers:	Yes
Custody Seal Present:	No	Sample Date/Times m	atch COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace	≥ 6mm:	N/A
Paperwork Enclosed:	Yes	Total Trip Blank Qty:		0
Samples Intact:	Yes	Air Quality Samples P	resent:	No
Missing Samples:	No			
Extra Samples:	No			
Discrepancy in Container Qty of	on COC: No			

Samples Chilled Details										
Th	ermometer Type:	s: DT = Dig	ital (Temp. Bottle	e) IR =	Infrared (Sur	face Temp)	All Temperatures in °C.			
Cooler #	Thermometer ID	Corrected Temp	Therm. Type	Ice Type	Ice Present?	Ice Container	Elevated Temp?			
1	DT121	0.7	DT	Wet	Y	Loose	Ν			

The following defines common symbols and abbreviations used in reporting technical data:

•	-						
RL	Reporting Limit	BMQL	Below Minimum Quantitation Level				
N.D.	none detected	MPN	Most Probable Number				
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units				
IU	International Units	NTU	nephelometric turbidity units				
umhos/cm	micromhos/cm	ng	nanogram(s)				
С	degrees Celsius	F	degrees Fahrenheit				
meq	milliequivalents	lb.	pound(s)				
g	gram(s)	kg	kilogram(s)				
μg	microgram(s)	mg	milligram(s)				
mĹ	milliliter(s)	Ľ	liter(s)				
m3	cubic meter(s)	μL	microliter(s)				
		pg/L	picogram/liter				
<	less than						
>	greater than						
ppm	parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.						
ppb	parts per billion						
Dry weight basis	Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.						

Laboratory Data Qualifiers:

- B Analyte detected in the blank
- C Result confirmed by reanalysis
- E Concentration exceeds the calibration range

J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)

- P Concentration difference between the primary and confirmation column >40%. The lower result is reported.
- U Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES. ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX B

PLANIT SAFE 3X3-5000 AR-AFFF SURROGATE TEST LIQUID AFFF ACUTE EFFECTS ON THE KILLIFISH, *FUNDULUS HETEROCLITUS*

MSDS

47 Sarahs Way Coatesville, PA 19320 Phone: 610-466-1717 Fax: 610-466-1718 www.vectorfire.net

MATERIAL SAFETY DATA SHEET #MS3X3

PLANIT SAFE TM 3 X 3 (XG) TEST LIQUID

Test Liquid Concentrate

Section 1. CHEMICAL PRODUCT/ COMPANY IDENTIFICATION

Material Identification

Product: **PLA NIT SAFE** 3 x 3 (XG) Test Liquid Concentrate Synonyms: Test Liquid CAS No.: Mixture – No single CAS No. applicable

Company Identification

Manufacturer: Vector Fire Technology, Inc. 47 Sarahs Way Coatesville, PA 19320

Phone: 610-466-1717 Fax: 610-466-1718

Section 2. COMPOSTION/ INFORMATION OF INGREDIENTS

<u>Components</u>	CAS No.
Water	7732-18-5
Potassium Chloride	7447-40-7
Sodium Benzoate	532-32-1
Xanthan Gum	11138-66-2

Section 3. HAZARDS IDENTIFICATION

Potential Health Effects

Inhalation

Vapors are minimal at room temperature. If product is heated or sprayed as an aerosol, airborne material may cause respiratory irritation.

Skin Contact

Contact with liquid may cause slight irritation or dermatitis due to removal of oils from the skin.

Eye Contact

Contact with liquid may cause eye irritation.

Ingestion

Not a hazard in normal industrial use. Small amounts swallowed during normal handling operations are not likely to cause injury; swallowing large amounts may cause injury or irritation.

Additional Health Effects

Existing eye or skin sensitivity may be aggravated by exposure.

Carcinogenicity Information

No data available.

Section 4. FIRST AID MEASURES

Inhalation

No specific treatment is necessary since this material is not likely to be hazardous by inhalation. If exposed to excessive levels of airborne aerosol mists, remove to fresh air. Seek medical attention if effects occur.

Skin Contact

In case of skin contact, wash off with flowing water or shower. Launder clothing before re-use.

Eye Contact

In case of eye contact, flush eyes promptly with water for 15 minutes. Retract eyelid often to ensure thorough rinsing. Contact physician if irritation persists.

Ingestion

Swallowing less than an ounce is not expected to cause significant harm. For larger amounts do not induct vomiting. Give milk or water. Never administer anything by mouth to an unconscious person. Seek medical attention.

Section 5. FIRE FIGHTING MEASURES

Flammable Properties Flash Point – Not Applicable

Fire and Explosion Hazards

Avoid contact with water reactive materials, burning metals and electrically energized equipment.

Extinguishing Media

Product is not an extinguishing media. Use media appropriate for surrounding materials.

Special Fire Fighting Instructions

None

Section 6. ACCIDENTAL RELEASE MEASURES

Safeguards (Personnel)

NOTE: Review FIRE FIGHTING MEASURES and HANDLING (Personnel) sections before proceeding with clean-up. Use appropriate Personal Protective Equipment during clean-up.

Accidental Release Measures

Concentrate or Test Liquid Solution

Stop flow if possible. Dilute with water to meet existing water quality standards. Flush area with water. Exercise caution, surfaces may be slippery. Disposal should be made in accordance with federal, state and local regulations.

Section 7. HANDLING AND STORAGE

Handling (Personnel)

Avoid contact with eyes, skin, or clothing. Avoid ingestion or inhalation. Rinse skin and eyes thoroughly in case of contact. Review HAZARDS and FIRST AID sections.

Storage

Recommended storage environment is between 35°F (2°C) and 120°F (49°C). Store product in original shipping container or tanks designed for product storage.

Section 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering Controls

Special ventilation is not required.

Personal Protective Equipment

Respiratory

Recommended exposure limits (OSHA-PEL and ACGIH-TLV) have not been determined for this material. The need for respiratory protection is not required.

Protective Clothing

Rubber or PVC gloves recommended.

Eye Protection

Safety glasses, face shield, or chemical splash goggles must be worn when possibility exists for eye contact. Contact lenses should not be worn. Eye wash facilities are recommended.

Other Hygienic Practices

Use good personal hygiene practices. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove soiled clothing and wash thoroughly before re-use.

Exposure Guidelines

Not Available

Section 9. PHYSICAL AND CHEMICAL PROPERTIES

Physical Data

Boiling Point:	Not applicable
Vapor Pressure:	Not applicable
Vapor Density:	Not applicable
Melting Point:	Not applicable
Evaporation Rate:	<1 (Butyl Acetate= 1.0)
Solubility in Water:	100%
pH:	8.0
Specific Gravity:	1.00 @ 25°C
Odor:	Bland
Form:	Liquid
Color:	Water White

Section 10. STABILITY AND REACTIVITY

Chemical Stability Stable

Incompatibility, Materials to Avoid

Avoid use of product on burning metals, electrically-energized equipment and contact with water reactive materials.

Polymerization

Will not occur.

Section 11. TOXICOLOGICAL INFORMATION

Mammalian Toxicity

This product has not been tested as a whole for acute oral and inhalation toxicity, primary eye irritation, or primary skin irritation.

Section 12. ECOLOGICAL INFORMATION

Ecotoxicological Information Aquatic Toxicity No data available.

Environmental Fate (Stated in mg/l)								
	As Concentrate	As 3% Solution with Water						
BOD ₅	8,320	250						
COD	16,900	507						

Section 13. DISPOSAL CONSIDERATIONS

PLANIT SAFE 3 x 3 Test Liquid Concentrate, as sold, is not a RCRA- listed waste or hazardous waste as characterized by 40 CFR 261. However, State, and local requirements for waste disposal may be more restrictive or otherwise different from Federal regulations. Proper clean up and disposal of this material into drains, sewers, or waterways is not expected to cause an environmental impact, however, consult with state or local authorities having jurisdiction regarding the proper regulations, requirements, or concerns encompassed within your site disposal plan.

PLANIT SAFE 3 x 3 Test Liquid Concentrate can be treated by waste water treatment facilities. Discharge into biological sewer treatment facilities may be done with prior approval. Specific concerns are high BOD load. Dilution will reduce BOC and COD factors proportionately. Low dosage flow rate to the treatment plant may be helpful. Disposal should be made in accordance with federal, state and local regulations.

Section 14. TRANSPORTATION INFORMATION

Shipping Information

Proper Shipping Name: Not a DOT Hazardous Substance Hazard Class: Not Regulated UN Number: None

Section 15. REGULATORY INFORMATION

U.S. Federal Regulations

Toxic Substances Control Act (TSCA)

All components of this product are listed in the TSCA inventory.

Superfund Amendments and Reauthorization Act of 1986 (SARA), Title III

Section 302/304

There are no components of this material with known CAS numbers which are on the Extremely Hazardous Substances (EHS) list.

Section 311 & 312

This material does not contain any components subject to Section 311 & 312 reporting requirements.

Section 313

This material does not contain any components subject to Section 313 reporting requirements.

COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA)

This material does not contain any components which are subject to the reporting requirements of CERCLA.

OTHER REGULATORY INFORMATION None

STATE REGULATIONS

PENNSYLVANIA RIGHT-TO-KNOW HAZARDOUS SUBSTANCES LIST

PA Hazardous Substances present at levels greater than 1%:

None

Section 16. OTHER INFORMATION

NFPA Rating Health 0 Flammability O Reactivity O

ADDITIONAL INFORMATION

Revision Summary

11/22/04 New Issue

The information contained herein is furnished without warranty either expressed or implied. This data sheet is not a part of any contract of sale. The information contained herein is believed to be correct or is obtained from sources believed to be generally reliable. However, it is the responsibility of the user of these materials to investigate, understand, and comply with federal, state and local guidelines and procedures for safe handling and use of these materials. Vector Fire Technology, Inc. shall not be liable for any loss or damage arising directly or indirectly from the use of this product and Vector Fire Technology, Inc. assumes no obligation or liabilities for reliance on the information contained herein or omissions here from.

Nov. 22, 2004 Original Issue Date

APPENDIX C

PLANIT SAFE 3X3-5000 AR-AFFF SURROGATE TEST LIQUID ACUTE EFFECTS ON THE KILLIFISH, *FUNDULUS HETEROCLITUS*

BIOLOGICAL EFFECTS AND WATER QUALITIES

	AQUA SURVEY, INC.									
Contraction of the local division of the loc	ACUTE EFFECTS FLOW THROUGH BIOASSAY-DILUTER IMFORMATION									
li										
	Study No.	Test S	ubstance		Test System	Test Vessels Type	Exposure Vol.			
Contraction of the second	36-037	2016	0219 F. heteroclitus			glass Jars	42			
	Dilutor Pr	ep Date	Pretest Cycle	S	Pretest Duration	Test Start Date	Test Start time			
	3/11/19	3/11/16 N/A			NA	3/13/16	1640			
	Test End Date Test End Time		e Test Cycles		Test Duration	Vol./Cycle/Vessel				
3/17/17 1040 166					96Hrs	0.5				

	Proportion Chambers Calibration										
	DWC	250	1 mg/c SS	50	DMS/L	1000	ms/L SS	2.000	mg/c	Hold	
Date	DW	DW	SS	DW	SS	DW	SS	DW	ŚS	SS	Comments
3/13/14	1 <i>110</i> 0 mL	937ML	63 ML	8 TSMC	125 ML	150 m	250 ML	SLO ML	SUDML	ILDO ML	47
3/14/110	~	/				/	/	\checkmark	~	~	47
3/15/16	V	V	V	V	-	V		V	V	~	47
3/14/14	\checkmark	~	\checkmark		V	/	r	~	~	V	47
DW = Dilue	nt Water		SS = S	tock Solu	tion	· N	lumbers =	Calibrate	ed (mL)	√=V	isual Inspection

DWC = Diluent Water Control

Date

DWC

В

Total Volume (DW+SS) = 1000 mL/Concentration

			*****	Splitte	ers Outp	out	locopietr constants			Adada ku sa tinan yali da sa taka k	na fair an ann an an an ann ann an ann an ann an a
	250 mg]с В	5 <i>00 m</i> A	s/L B	<i>1000 m</i> z A	јс В	JUIDM A	<u>ç/L</u> B	HARS H	<u>у/с</u> В	Initial/ Comments
0	500	500	500	500	490	510	570	498	520	480	ЧT

3/16	500	500	500	500	500	300	490	010	310	498	520	480	YT
3/14/16	480	520	680	SOU	500	510	-180	520	580	500	520	480	YT
3/15/14	490	510	510	500	180	520	500	500	140	570	50	491	47
3/11./14	510	490	520	480	575	485	570)	500	510	490	575	485	47

Comment: STOCK Solution 10an Ma K STOC Solution properse 336 groms OF Test SUBSTE daily. OF 84/11tors TOTO Valume USin 4000 12 OF Th Test SUBSTORCO wate Me 1 Salubility SUIVe 9 SPare 1: MiT as Undis 1.1 weig 05501110 1A STOCK Th Solutio

AQUA SURVEY, INC

Study N 36-0		ystem: hetc/ocl/7	νs		Start Date: 3 / 16
NO.	Length (mm)	Weight (gm.)	NO.	Length (mm)	Weight (gm.)
1	18	1,69	1		/
2	49	1.25	2		
3	46	1.07	3		
4	49	1.14	4		
5	47	1.33	5		/
6	45	0,93	6	/	
7	58	1.30	7		
8	52	1.52	8		
9	48	1.09	9		
10	50	1.38	10		
Mean			Mean		
Date Initials	3/13/16 4j	3/13/16 4T	Date Initials		

Comments:	

AQUA SURVEY, INC

ACUTE EFFECTS TEST-SURVIVAL/MORTALITY-CLINICAL OBSERVATIONS													
ASI#		Test Subst	ance:		Tes	t System:		Test	Start	Test S	Start		
36-0	36-037 20160219 F.h. et era								: 3/13/14	6 Time:	1040		
Conc.		S	urvival/Mc	ortality-H	ours		. (Clinical Observations-Hours					
(mg/L)	Initi	al	24	48	72	96		24	48	72	96		
DucA	10		10	10.	10	10		N	N	N	N		
В	10		D	10	10	10		N	N	N	N		
25-1 A	10		10	10	10	10		N	N	N	N		
B	10		10	10	10	10		N	N	N	N		
500 A	10)	10	10	10	10		N	N	N	N		
В	10		10	10	10	10		N	N	N	N		
1000 A	10		10	10	10	10		N	N	N	N		
В	10	Sector and the sector of the sector	10	10	10	10		N	N	N	N		
2003 A	10		10	10	10	10		N	N	N	N		
В	10	Accession of the second second	10	10	10	10		N	N	N	N		
HIR A	18		10	10	10	ID		N	N	N	N.		
B	10		10	10	10	10		N	N	N	N		
A													
В			aluut		31.1.					Church and and			
Date Initials	3/13/1	6		3/5/16		3/17/16		3/19/14		3/14/16	3/17/16		
	41		41	41	41	41		YT	47	YT	41		

CLINICAL SIGNS

N = Normal

Behavior	Swimming	Integument	Pigmentation	Respiration
QU = Quiescent HY = Hyper excitable SF = Surfacing SD = Sounding SP = Spasmodic	SE = Erratic GY = Gyrating SI = Inverted SS = On Side SC = Ceased	MS = Mucus Shedding MC = Mucus Coagulation HM = Hemorrhagic	LD = Light Discolored DD = Dark Discolored	RS = Slow RR = Slow RI = Irregular RL = Labor GA = Gulping Air

Comments: OF Tes Substa all concent ration Percec it apparen Soisb IN dilumt water as undissolv Phiticles 06Selles was all Test Throw Vessel es7 41 64 all Test Vesse/s Were aerat 41

44

037-0.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	03/13/16 11:04:03	20.98	24990.0	15.25	8.04	7.75
1	03/13/16 11:04:46	20.94	24906.0	15.19	8.03	7.75
2	03/13/16 11:05:17	21.00	24916.0	15.20	7.98	7.74
3	03/13/16 11:05:35	20.99	24910.0	15.19	7.98	7.75
4	03/13/16 11:05:55	21.01	24930.0	15.21	8.06	7.75
5	03/13/16 11:07:05	20.98	24942.0	15.21	7.84	7.74

 Project #: 36-037 Test type: Acute \Box Chronic \Box Day Sed Tox \Box OTHER: ______ Date: 3/t3/16

 Species: \Box A. bahia \Box C. dilutus \Box H. azteca \Box M. beryllina \Box P. promelas \Box OTHER: ______ F. helevae $1/t \Box S$

 Day of Study: _____

 OPERATIONAL RANGE: Check if OK

Temperature:	□ 22 –24 °C □ 24 –26 °C □ 24 –26 °C ☑ <u>20</u> – <u>24</u> °C	Blue
Salinity:	□ 23–27 ppt □ 28 –32 ppt ☑ <u>13</u> – <u>17</u> ppt	Red 🗆
Dissolved Oxyger	n: □ >2.5 mg/L 🔄> <u>.50</u> mg/L	Green
pH:	\blacksquare 7.3 to 8.3 \Box 6.0 to 9.0 \Box to to Temp Correction Fac	ctor:
Actions taken:		
- Mar 12 11.10.	42 2016	Page 1 of 1

Sun Mar 13 11:10:43 2016Page 1 of 1See deviation summary sheet □Initials: 4745

037-24.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	03/14/16 11:14:14	21.28	25384.0	15.51	7.19	7.74
1	03/14/16 11:15:09	21.35	25358.0	15.49	7.38	7.69
2	03/14/16 11:15:33	21.44	25362.0	15.49	7.46	7.67
2	03/14/16 11:15:58	21.43	25340.0	15.48	7.55	7.68
	03/14/16 11:16:29	21.53	25292.0	15.44	7.53	7.67
4	03/14/16 11:17:03	21.52	25214.0	15.39	7.44	7.64
5	03/14/10 11.17:09	21.02				

Project #: <u>36-037</u> Test type: Acute Chronic Day Sed Tox OTHER: _____ Date: <u>3/14/16</u> Species: $\square A. bahia \square C. dubia \square C. tentans \square H. azteca \square M. beryllina \square P. promelas POTHER: F. hereraclitaces$ Day of Study: 24 Hrs. Meter Used: OPERATIONAL RANGE: Check if OK Temperature: \Box 22-24 °C \Box 24 – 26 °C \Box 25 – 27 °C \Box 20 – 24 °C Blue □ 23 –27 ppt □ 28 –32 ppt □ <u>13</u> – <u>17</u> ppt Red Salinity: Dissolved Oxygen: $\Box > 2.5 \text{ mg/L}$ $\blacksquare > 5.6 \text{ mg/L}$ Green 4 □ 1.3 to 8.3 □ 6.0 to 9.0 □_____ to _____ Temp Correction Factor: pH:

Actions taken:

Mon Mar 14 11:33:11 2016

Page 1 of 1

See deviation summary sheet \Box

037-48.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	03/15/16 10:10:29	21.39	24993.0	15.24	7.37	7.57
1	03/15/16 10:11:26	21.40	25029.0	15.27	7.43	7.65
2	03/15/16 10:12:01	21.44	25037.0	15.27	7.49	7.68
3	03/15/16 10:12:24	21.43	25073.0	15.30	7.53	7.69
4	03/15/16 10:12:48	21.52	25155.0	15.35	7.48	7.69
5	03/15/16 10:13:14	21.56	25301.0	15.45	7.41	7.67

Project #: 36-037 Test type: Acute Chronic Day Sed Tox OTHER: _____ Date: 3/15/16 Species: $\Box A$. bahia $\Box C$. dubia $\Box C$. tentans $\Box H$. azteca $\Box M$. beryllina $\Box P$. promelas \Box OTHER: <u>F. h.t. o cocl</u> tes Day of Study: 48H15 Meter Used: OPERATIONAL RANGE: Check if OK Temperature: □ 22-24 °C □ 24 - 26 °C □ 25 - 27 °C ☑ <u>20</u> - <u>24</u> °C Blue □ 23 –27 ppt □ 28 –32 ppt 13 – 17 ppt Red Salinity: Green 9 Dissolved Oxygen: $\Box > 2.5 \text{ mg/L}$ $\Box > 5.0 \text{ mg/L}$ ₽**7**.3 to 8.3 □ 6.0 to 9.0 □_____ to _____ Temp Correction Factor: pH:

Actions taken:

Tue Mar 15 10:28:45 2016

Page 1 of 1

Initials:

See deviation summary sheet \Box

037-72.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	03/16/16 08:29:22	21.83	25016.0	15.26	7.54	7.46
1	03/16/16 08:30:37	21.85	24965.0	15.22	7.57	7.60
2	03/16/16 08:31:22	21.86	24965.0	15.22	7.65	7.67
3	03/16/16 08:32:01	21.85	24967.0	15.22	7.70	7.69
4	03/16/16 08:32:33	21.94	24984.0	15.23	7.65	7.68
5	03/16/16 08:33:15	21.99	25029.0	15.26	7.56	7.65

Project #: <u>36-037</u> Test type: Acute \Box Chronic \Box Day Sed Tox \Box OTHER: _____ Date: <u>3/16/16</u> Species: \Box A. bahia \Box C. dubia \Box C. tentans \Box H. azteca \Box M. beryllina \Box P. promelas \Box OTHER: <u>F. h.t.oroclitus</u> Day of Study: 12 Hrs Meter Used: OPERATIONAL RANGE: Check if OK Temperature: \Box 22-24 °C \Box 24 – 26 °C \Box 25 – 27 °C \Box <u>20 – 24</u> °C Blue □ 23 –27 ppt □ 28 –32 ppt <u>13</u> – <u>17</u> ppt Red Salinity: Dissolved Oxygen: □ >2.5 mg/L ☑ >2.5 mg/L Green 9 ▼7.3 to 8.3 □ 6.0 to 9.0 □_____ to _____ Temp Correction Factor: pH:

Actions taken:

Wed Mar 16 08:36:42 2016

Page 1 of 1

See deviation summary sheet □

037-96.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	03/17/16 08:42:55	22.18	25160.0	15.35	7.44	7.53
1	03/17/16 08:43:43	22.18	25195.0	15.37	7.53	7.60
2	03/17/16 08:44:10	22.22	25191.0	15.37	7.65	7.65
3	03/17/16 08:44:33	22.21	25199.0	15.37	7.71	7.69
4	03/17/16 08:44:55	22.29	25215.0	15.38	7.70	7.69
5	03/17/16 08:45:15	22.32	25266.0	15.42	7.66	7.67

Project #: <u>36-037</u> Test type: Acute D Chronic D Day Sed Tox D OTHER: _____ Date: <u>3/17/16</u> Species: $\Box A. bahia \Box C. dubia \Box C. tentans \Box H. azteca \Box M. beryllina \Box P. promelas POTHER: F. hereicolites$ Day of Study: 96 Hrs Meter Used: OPERATIONAL RANGE: Check if OK Temperature: \Box 22-24 °C \Box 24 - 26 °C \Box 25 - 27 °C $B 2 \partial - 24 \circ C$ Blue □ 23 –27 ppt □ 28 –32 ppt 🗉 <u>13</u> – <u>17</u> ppt Red Salinity: Green Dissolved Oxygen: $\Box > 2.5 \text{ mg/L}$ $\boxtimes > \underline{5.0} \text{ mg/L}$ ₽7.3 to 8.3 □ 6.0 to 9.0 □_____ to _____ Temp Correction Factor: pH:

Actions taken:

Thu Mar 17 08:49:51 2016

Page 1 of 1

See deviation summary sheet \Box

AQUA SURVEY, INC.

CULTURE ORGANISM DISTRIBUTION FORM

DATE: <u>3/13/16</u>	
TEST JOB #: <u>36-037</u>	CLIENT: VFT
TEST LOCATION: IN-LAB [\int]	FIELD []
TEST SPECIES: F. Letinclikes	
TOTAL NUMBER ORGANSIMS TRANSFERRED:	20+
AQUA SURVEY, INC. CULTURE LAB INVESTIGATORS:	4147
A. <u>ORGANISMS</u>	
1. ASI CULTURE/ HOLDING UNIT: 50	gallon tack
2. RECEIVING LOG #: <u>35.02</u>	
3. CULTURE LOG #: <u>35-00-25</u>	
4. AGE/ SIZE INFORMATION: HD: 5/20/	5
B. <u>HOLDING</u> $[\checkmark]$ <u>CULTURE</u> $[]$	WATER PARAMETERS
1. TEMPERATURE: $2\partial t \partial c$	
2. SALINITY: <u>15±1 ppt</u>	
2. SALINITY: <u>15±1 ppt</u> 3. WATER SOURCE: <u>Моладиал</u>	
B. <u>TRANSFER CUSTODY & TRANSFER</u>	
1. LIVESTOCK RELINQUISHMENT	DATE: <u>3/13/16</u> TIME: <u>1000</u> BY: <u>YT</u>
2. LIVESTOCK RECEIVING	DATE: <u>3/13/16</u> TIME: <u>/020</u> BY: <u>9T</u>
3. CULTURE SUPERVISOR OR SENIOR TECH	H. INITIALS:
REMARKS:	

50

AQUA SURVEY, INC. CULTURE DEPARTMENT GENERAL SPECIES HOLDING LOG

Species: F. h.fenclitus		
Receiving [X] Culture [35.021	
Test Job #: <u>36-037</u>	 Client:	VFI

Recurd on 10/15/15 Dates: Isolated for the sting 3/3-13/16 Initial Stock @: Food Type: Flake ITrout Chas

Date	Day	Temp/DO	NH ₃ /NO ₂	pH	(Sal/)Hardness	Alkalinity	Mortality	Remarks/ Initials
³ /3/14	0	21.9°C/ 72.5mg/L	0/0	7.29	18.7.ppt	60	Ø	Istated to acclimate to testing of
3/4/16	1	21.7°C/7.04mg/	0.0-0.2	7.35	18.9ppt	60	Ø	Water Exchange Fed
3/5/16	2		-	-	-	~	~	-
3/6/16	3	-	1	1	-	-		
3/7/16	4	21.8°C/7.27mg/L	0.0/0.0	7,40	17.9ppt	60	Ø	Water Exchange Fral M/KH
3/8/16	5		-	-	_	-	-	Fid of Water Exchange
3/9/16	6	23.6°C/7,41.mg/L	0.25/0.0	7.29	16.5ppt	64	Ø	Water Exchange Fed HILH
3/10/16	7	-	-	-			-	Eid M Water Exchange
3/11/16	8	22.9°C/7.26mg/	0.25/0.6	7,33	16.2ppt	72	Ø	Water Exchange Fid HILH
3/12/16	9	22.9/6.58 mg 12	0/0	7.48	15.2ppt	60	Ø	Fed
3/13/16	Þ	22.0 C/7. 28 mgl	0/0	7.46	15.4ppl	60	ø	To Test of
					'n			
				1				

AQUA SURVEY, INC. CULTURE DEPARTMENT

Water- Clear/ Cloudy Container Size: (2) lage ful bags ICE: (Y)N Type of Packing: (2) Styreform Bass Observation/ Condition of Livestock: (1)111 (2) Styreform Bass
Species: F. hckracli hs Number Shipped: Image: Characteristics ASI Order Ref. Date: ASI Order Ref. Initials: Image: Characteristics Image: Char
Livestock Source/ Shipper: <u>ARO</u> ASI Order Ref. Date:
ASI Order Ref. Date: ASI Order Ref. Initials: y_T Age/ Characteristics $\frac{HA}{2}: 05/2015$ Taxonomic Verification Log #: Date: Receiving Water Quality Parameters D.O: 33.4 hg/l Temp.: $16.6.2$ NH ₃ /NO ₂ : $10/0.0$ pH: 6.47 (Salinity/) Hardness $19.5ppt$ Alkalinity: 120 Water- Clear/ Cloudy Container Size: (a) 100
Age/ Characteristics #S: 05/2015
Age/ Characteristics #S: 05/2015
Taxonomic Verification Log #:
Receiving Water Quality Parameters D.O: 33.4 mg/l Temp.: 16.6 °C NH ₃ /NO ₂ : 10/0.0 pH: 6.47 Salinity/) Hardness 19.5ppl Alkalinity: 120 Water- Clear/ Cloudy Container Size: (2) large field bage ICE: YN Type of Packing: (2) Support Brue Observation/ Condition of Livestock: Import IIIII
D.O: <u>33.4-mg/l</u> Temp.: <u>16.642</u> NH ₃ /NO ₂ : <u>10/0.0</u> pH: <u>6.47</u> Salinity/) Hardness <u>14.5ppl</u> Alkalinity: <u>120</u> Water- <u>Clear/ Cloudy</u> Container Size: <u>(2) large fiel bage</u> ICE: <u>(Y)N</u> Type of Packing: <u>(2) Styretonm Brue</u> Observation/ Condition of Livestock: <u>Appar 1111</u>
D.O: <u>33.4-mg/l</u> Temp.: <u>16.642</u> NH ₃ /NO ₂ : <u>10/0.0</u> pH: <u>6.47</u> Salinity/) Hardness <u>14.5ppl</u> Alkalinity: <u>120</u> Water- <u>Clear/ Cloudy</u> Container Size: <u>(2) large fiel bage</u> ICE: <u>(Y)N</u> Type of Packing: <u>(2) Styretonm Brue</u> Observation/ Condition of Livestock: <u>Appar 1111</u>
Salinity/ Hardness 19.5ppt Alkalinity: 10 Water- Clear/ Cloudy Container Size: (2) lage full bags ICE: YN Type of Packing: (2) Sturgerm Brus Observation/ Condition of Livestock: Appar IIIII
Salinity/ Hardness 19.5ppt Alkalinity: 10 Water- Clear/ Cloudy Container Size: (2) lage full bags ICE: YN Type of Packing: (2) Sturgerm Brus Observation/ Condition of Livestock: Appar IIIII
Observation/ Condition of Livestock:
Observation/ Condition of Livestock:
Observation/ Condition of Livestock:
Passiving Tech Initials:
Passiving Tech Initials:
Receiving Tech. Initials: Supervisors Initials:
- · · ·

DATA SHEET

I. Organism	History
Species	FUNDULUS hETEROCITES
	Lab reared Hatchery reared Field collected
Н	Iatch date OS/2015 Receipt date 10/02/15
L	ot number 100215MC Strain WILD
В	Brood origination HAMPTON NH
II. Water Q	
Т	emperature 22 °C Salinity 30 ppt D.O. Sat ppm
р	H <u>S-S</u> su Hardness ppm Alkalinity ppm
III.Culture	Conditions
F	reshwater Saltwater Other
R	Recirculating Flow through Static renewal
Ľ	DIET: Flake food Phytoplankton Trout chow
	Artemia Rotifers YCT Other
Р	Prophylactic treatments: Forma lin 250 ppm/1hr X2
C	Comments: 96 hr Freshwater dip
_	
~ ~	g Information
C	Client: <u>AUVASURVEY</u> # of Organisms <u>300</u> +
C	Client: <u>AQUASURIEY</u> # of Organisms <u>300</u> + Carrier: <u>PEOEX</u> Date shipped <u>10/14/15</u> Biologist: <u>Stan Scintabi</u>
E	Biologist: Atan Sintahi

PO BOX 1271 HAMPTON NH 03843-1271 (603) 926-1650 AROFISH@AOL.COM

#	Time, GMT-05:00	Temp, °C	Coupler Detached	Coupler Attached	Host Connected	Stopped	End Of File
	03/11/16 11:00:00 AM	21.819	Logged				
2	03/11/16 12:00:01 PM	21.963			2		
m	03/11/16 01:00:02 PM	22.154					
4	03/11/16 02:00:03 PM	22.154					
ы	03/11/16 03:00:04 PM	21.939					
9	03/11/16 04:00:05 PM	21.867					
7	03/11/16 05:00:06 PM	21.795					
8	03/11/16 06:00:07 PM	21.772					
6	03/11/16 07:00:08 PM	21.724					
10	03/11/16 08:00:09 PM	21.652					
11	03/11/16 09:00:10 PM	21.533					
12	03/11/16 10:00:11 PM	21.413					
13	03/11/16 11:00:12 PM	21.270					
14	03/12/16 12:00:13 AM	21.151					
15	03/12/16 01:00:14 AM	20.984					
16	03/12/16 02:00:15 AM	20.865					
17	03/12/16 03:00:16 AM	20.793					
18	03/12/16 04:00:17 AM	20.698					
19	03/12/16 05:00:18 AM	20.603					
20	03/12/16 06:00:19 AM	20.531					
21	03/12/16 07:00:20 AM	20.484					
22	03/12/16 08:00:21 AM	20.436					
23	03/12/16 09:00:22 AM	20.388					
24	03/12/16 10:00:23 AM	20.388					
25	03/12/16 11:00:24 AM	20.436					
26	03/12/16 12:00:25 PM	20.507					
27	03/12/16 01:00:26 PM	20.603					

*

#	Time, GMT-05:00	Temp, °C	Coupler Detached	Coupler Attached	Host Connected	Stopped	End Of File
28	03/12/16 02:00:27 PM	20.674					
29	03/12/16 03:00:28 PM	20.722					
30	03/12/16 04:00:29 PM	20.770					
31	03/12/16 05:00:30 PM	20.817					
32	03/12/16 06:00:31 PM	20.817					
33	03/12/16 07:00:32 PM	20.817					
34	03/12/16 08:00:33 PM	20.817					
35	03/12/16 09:00:34 PM	20.841					
36	03/12/16 10:00:35 PM	20.841					
37	03/12/16 11:00:36 PM	20.841					
38	03/13/16 12:00:37 AM	20.817					
39	03/13/16 01:00:38 AM	20.793					
40	03/13/16 02:00:39 AM	20.770				~~~~~	
41	03/13/16 03:00:40 AM	20.746					
42	03/13/16 04:00:41 AM	20.722					
43	03/13/16 05:00:42 AM	20.674					
44	03/13/16 06:00:43 AM	20.674					
45	03/13/16 07:00:44 AM	20.627					
46	03/13/16 08:00:45 AM	20.627					
47	03/13/16 09:00:46 AM	20.722					
48	03/13/16 10:00:47 AM	20.674					
49	03/13/16 11:00:48 AM	20.674					
50	03/13/16 12:00:49 PM	20.698					
51	03/13/16 01:00:50 PM	20.865					
52	03/13/16 02:00:51 PM	21.056					
23	03/13/16 03:00:52 PM	21.223					
54	03/13/16 04:00:53 PM	21.413					

#	Time, GMT-05:00	Temp, °C	Coupler Detached	Coupler Attached	Host Connected	Stopped	End Of File
55	03/13/16 05:00:54 PM	21.581					
56	03/13/16 06:00:55 PM	21.700					
57	03/13/16 07:00:56 PM	21.819					
58	03/13/16 08:00:57 PM	21.891					
59	03/13/16 09:00:58 PM	21.939					
60	03/13/16 10:00:59 PM	21.987					
61	03/13/16 11:01:00 PM	21.987					
62	03/14/16 12:01:01 AM	21.915					
63	03/14/16 01:01:02 AM	21.819					
64	03/14/16 02:01:03 AM	21.676					
65	03/14/16 03:01:04 AM	21.557					
99	03/14/16 04:01:05 AM	21.437					•
67	03/14/16 05:01:06 AM	21.342					
68	03/14/16 06:01:07 AM	21.199					
69	03/14/16 07:01:08 AM	21.151					
70	03/14/16 08:01:09 AM	21.127					
71	03/14/16 09:01:10 AM	21.103					
72	03/14/16 10:01:11 AM	21.151					
73	03/14/16 11:01:12 AM	21.103					
74	03/14/16 12:01:13 PM	21.175					
75	03/14/16 01:01:14 PM	21.223					
76	03/14/16 02:01:15 PM	21.294					
77	03/14/16 03:01:16 PM	21.366					
78	03/14/16 04:01:17 PM	21.390					
79	03/14/16 05:01:18 PM	21.437					
80	03/14/16 06:01:19 PM	21.485					
81	03/14/16 07:01:20 PM	21.533					

	Laborer						
#	Time, GMT-05:00	Temp, °C	Coupler Detached	Coupler Attached	Host Connected	Stopped	End Of File
82	03/14/16 08:01:21 PM	21.581					
83	03/14/16 09:01:22 PM	21.604					
84	03/14/16 10:01:23 PM	21.628					
85	03/14/16 11:01:24 PM	21.581					
86	03/15/16 12:01:25 AM	21.533					
87	03/15/16 01:01:26 AM	21.461					
88	03/15/16 02:01:27 AM	21.390					
68	03/15/16 03:01:28 AM	21.318					
06	03/15/16 04:01:29 AM	21.246					
91	03/15/16 05:01:30 AM	21.175					
92	03/15/16 06:01:31 AM	21.151					
93	03/15/16 07:01:32 AM	21.151					
94	03/15/16 08:01:33 AM	21.151					
95	03/15/16 09:01:34 AM	21.032					
96	03/15/16 10:01:35 AM	21.103					
97	03/15/16 11:01:36 AM	21.246					
98	03/15/16 12:01:37 PM	21.437					
66	03/15/16 01:01:38 PM	21.604					
100	03/15/16 02:01:39 PM	21.795					
101	03/15/16 03:01:40 PM	21.963					
102	03/15/16 04:01:41 PM	22.154					
103	03/15/16 05:01:42 PM	22.321					
104	03/15/16 06:01:43 PM	22.465					
105	03/15/16 07:01:44 PM	22.585					
106	03/15/16 08:01:45 PM	22.657					
107	03/15/16 09:01:46 PM	22.705					
108	03/15/16 10:01:47 PM	22.729					

End Of File			1				
g			-			34 1 2 1 S 1	